



## Enjoy solving complex problems using creative mathematical thinking? So do we!

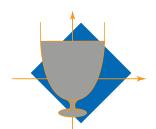
Visit <u>www.janestreet.com</u> to learn more about our educational programs, internships and full-time roles.

And of course - Good Luck!

## Voliš rješavati teške probleme koristeći kreativno matematičko razmišljanje? I mi!

Posjeti <u>www.janestreet.com</u> gdje možeš saznati više o edukacijama, stažiranjima i prilikama za zaposlenje.

I naravno - Puno sreće!



## 14<sup>TH</sup> EUROPEAN MATHEMATICAL CUP



 $13^{th}$  December 2025 -  $21^{st}$  December 2025 Senior Category

**Problem 1.** Let  $k \ge 2$  be an integer. Let m and n be coprime positive integers with exactly k positive divisors such that m < n.

For  $i \in \{1, ..., k\}$ , denote by  $f_i$  and  $d_i$  the *i*-th smallest divisor of m and n, respectively. Suppose that

$$d_i - f_i \mid n - m$$

for all  $i \in \{2, ..., k\}$ . Prove that  $d_i \geqslant f_i$  for all  $i \leqslant \frac{k}{2}$ .

(Ivan Novak)

**Problem 2.** Let  $f: \mathbb{N} \to \mathbb{N}$  (where  $\mathbb{N}$  is a set of positive integers) be a function such that for every positive integer k, the set  $\{f(1), f(2), \ldots, f(k)\}$  contains exactly f(f(k)) elements. Prove that

$$f(f(f(k))) = f(k)$$

for every positive integer k.

(Ivan Novak)

**Problem 3.** Let ABC be an acute triangle with circumcircle  $\omega$ . Let the angle bisector of  $\angle B$  intersect AC,  $\omega$ , and the parallel to AB from C in D, E and F respectively. Let X be the intersection of  $\omega$  and the circumcircle of triangle DCF, and let Y be a point on CF such that YF = YD. The line XF intersects  $\omega$  and DY in T and P respectively. The circumcircle of triangle  $\triangle TDE$  meets the lines PF and EY in EX and EX. Prove that the circumcircles of triangles EX0 and EX2 are internally tangent.

(Yasser Merabet)

**Problem 4.** Determine all sequences of positive real numbers  $a_1, a_2, a_3, \ldots$ , such that for each positive integer n the following equality holds:

$$a_n + \max(a_{n+1}, a_{n+2}) = \frac{1}{\min(a_n, a_{n+1})}.$$

(Ivan Novak)

Time: 240 minutes.

Each problem is worth 10 points.