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Problem 1. We call a pair of distinct numbers (a,b) a binary pair if ab+ 1 is a power of two. Given a set S
of n positive integers, what is the maximum possible number of binary pairs in S7

(Oleksii Masalitin)

First Solution. The answer is n — 1, achieved by choosing 2¥ — 1 for 1 < k < n. One can then easily see that 1,2F — 1
makes a binary pair for n > k > 1. For the bound, make a graph G with vertices a1, ...an, and connect (a,b) if a,b
makes a binary pair.

2 points.
The key is the following:
Claim 1. G does not contain a cycle.
Proof. Assume otherwise and suppose:
xr1T2 + 1= 2a1
Towz + 1 =2
Tnri +1=2%"
for positive integers ai,...a, and n > 3. WLOG let a1 be the greatest (not necessarily unique). Notice that all z; are
odd, this is just parity. Focus on the following three equations:
Tpxy + 1 =2 (1)
T1X2 + 1= 2a1 (2)
roxs +1 = 242 (3)
Subtracting (1) from (2) and (3) from (2) results in:
x1(x2 — ) =2 (2907 — 1) = @1 | 217" — 1 as z1 is odd
zo(x1 —@ws) = 2°2(2°17%2 — 1) = 22| 2172 — 1 as x2 is odd
3 points.

The bound z122 + 1 < (znx1 + 1) (2223 + 1) can be verified by simple expansion. In turn, this gives az + a, > a1
3 points.

Finally:
20 — 1 =mqag | (271792 —1)(2M 7 — 1) < 291 =21 T2 M 4 ] L2 — ]

As (291792 —1)(21 7% — 1) is nonnegative, the divisibility can hold only if it is equal to 0. This would give a1 = a,, or
a1 = ag, contradicting x, # z2 and x1 # x3 respectively.

O
As a graph with n vertices not containing cycles can have at most n — 1 edges, the proof of the bound is finished.

2 points.



Second Solution. Here we present an approach using Zsigmondy’s theorem. Assume that 7' = {b1,... by} is the set of
all indices with the maximal value of a;, call it M. Observe that a;-s in 7" must not be consecutive, otherwise they would
violate the distinct x; condition. Now we can multiply the equations to get the following:

[Ie"-uniIles -y
i€T i¢T
2 points.

We get a contradiction with Zsigmondy’s theorem as 2" — 1 has a primitive prime divisor not dividing 2" — 1 for n < M,
except for the case M = 6

4 points.
. Assume x;x;+1 = 63 for some i.
e if z; = 63, then ;1o = 63 as 2% is the greatest possible value, contradicting distinctness.
e if x; = 21, one similarly gets x;42 = 21, again a contradiction.
e the rest of the cases are similar and bruteforce
2 points.

Third Solution. Again, the construction and the comment is the same as in the first solution. For the bound, we claim
the following:
If (a,b), (a,c) are two binary pairs with a > b, ¢, then b = c.

1 point.
Proof. WLOG assume b > c. As ac+ 1 and ab + 1 are powers of 2, we have:
ac+1]ab+1
ac+1]a(b—c)
ac+1]b—c
4 points.
But, if b > ¢, then
O0<b-—c<b<a<ac+1
2 points.
, contradiction. O

Now, all elements of S except the smallest can be the larger element in at most one binary pair, giving the bound n — 1

1 point.

Comment: One can show no cycles of odd length with little effort: All powers of 2 involved are at least 4. Now
subtract one and multiply all equations together, and finish by mod 4.



Problem 2. Let n be a positive integer. The numbers 1,2,...,2n + 1 are arranged in a circle in that order,
and some of them are marked.

We define, for each k such that 1 < k& < 2n + 1, the interval I; to be the closed circular interval starting at k
and ending at k + n (taking remainders modulo 2n + 1 if & +n > 2n + 1). We call an interval I, magical if it
contains strictly more than half of all the marked elements.

Prove that the following two statements are equivalent:

1. At least n + 1 of the intervals I, Is, ..., I3, 41 are magical.
2. The number of marked numbers is odd.

(Andrei Constantinescu)

First Solution. Let S be the set containing all the marked numbers and S; = SN/;. Note that S;NS;+n, = 0 or {i+n}.
So for each 7 we have that
S| =S| +1, ifi+nesS
[Sitn| = :
|S|—|Sil, otherwise.
2 points.
Suppose |S| is odd. For each interval, I;, that isn’t magical we have that |S;| < % (since the equality can’t hold) hence

[Sitn| > |S| — |Si| > |S| — \%I = ‘—‘;‘ so I+, is magical. So for each non magical interval we can find a unique magical

one, therefor we must have at least n 4+ 1 magical intervals.

4 points.
Now suppose |S] is even. For each magical interval I;, we have that |S;| > % hence [Sitn| < |S|—1Si|+1 < |S]— @—&—1 =
|2ﬂ +1 = [Sitnl| < % so Ii+n is not magical. Since for each magical interval we can find a unique non magical one,
there must be at least n + 1 non magical intervals, so less that n 4+ 1 magical ones.

4 points.

Second Solution. Represent the remainders modulo 2k 4+ 1 in a circle in ascending order. For the rest of the solution,
t-good means the interval [t,¢ 4 k] is magical, and the set being very good means it satisfies property (1). Label the
vertices of the graph as (0,1,2,...,2k). If S is t-good, draw an edge between ¢ and ¢ + k (taken modulo 2k + 1). Now we
prove both directions:

e Let |S| = 2[ be very good. The critical observation is the following: there is a node with degree 2. Since S is very
good, there are at least k + 1 edges. Thus, the total sum of degrees is at least 2k + 2.

1 point.
By the pigeonhole principle, there is a node with degree 2. Let a be the value of this node.
1 point.

By definition, the intervals [a,a + k] and [a — k, a] each contain more than half of the elements of S, i.e., at least
[ 4+ 1 elements each. These two intervals share exactly one element.

2 points.
Thus, the total number of distinct elements of S in these intervals is at least:
20+2 (ifa¢S), or 20+1 (iffa€cbs).
This contradicts |S| = 2. Hence, if S is very good, S must have an odd number of elements.
1 point.

e Now let |[S| = 2/—1. A similar lemma applies: every node has degree at least 1. Fix a value z. The intervals [z —k, z]
and [z, + k| cover the entire residue class modulo 2k + 1 and share exactly one element. Now we split into two
cases:

— If x € S, the remaining elements of S are in two disjoint intervals [x — k,z — 1] and [z + 1,2 + k]. By the
pigeonhole principle, one of these intervals contains at least [ — 1 elements. Adding x creates a good interval
with one of its endpoints at x, so x has degree at least 1.

— If x ¢ S, the elements of S are in two disjoint intervals [z — k,x — 1] and [z + 1,z + k]. By the pigeonhole
principle, one of these intervals contains at least [ elements, so the conclusion is the same as above.

In either case, x has degree at least 1.
3 points.

Similarly, every node has degree at least 1, so the total sum of degrees is at least 2k 4+ 1. By the handshake lemma,
the total sum of degrees is at least 2k + 2. This gives at least k + 1 edges. Thus, S is indeed x very good.

2 points.



Problem 3. Let w be a semicircle with diameter AB and let M be the midpoint of AB. Let X,Y be the points
in the same half-plane as w with respect to the line AB such that AM XY is a parallelogram. Let I be the
incenter of the triangle M XY . Lines M X, MY intersect w in points C, D respectively. Let T be the intersection
of AC and BD. The line MT intersects XY in E. If P is the intersection of E1 and AB, and @ is the projection
of F onto the line AB, show that M is the midpoint of PQ.

(Michal Pecho)

Solution. We will work in the context of a triangle M XY . The solution is in two parts:
Claim 2. F is the M -excircle touch point with XY
We present two proofs:
Proof. We first claim that T'C'D is tangent to both M X and MY. Observe:
/MCT =/MCA=/CAM = /CAB = Z/CDB = Z/CDT
where the angles are directed. This shows that M X is tangent to DCT'. Analogous proof gives MY tangent to CDT.

2 points.

Now we claim that the tangent to DCT at T is parallel to XY. The cleanest way is through negative inversion in 7T’
fixing the circle with diameter AB. This sends (CDT) into AB and fixes the tangent. The tangency is preserved, so the
two lines are parallel, as desired.

1 point.

If the mentioned tangent meets M X and MY at R,S respectively, we have shown that CDT is M-excircle in M RS.
Consider the homothety centred at M that maps RS to XY. It also maps 7" into E, but it also sends the excircle of
MRS into the excircle of M XY, hence sending the M-touchpoint in M RS (i.e. T') into F, which is what we wanted to
show.

3 points.
O

Proof. Let U,V be points of XY such that U, X,Y,V lie on XY in that order, and UX = XM,VY = Y M. Also let
R, S be the intersections of XY with AC, BD respectively (note that these do not correspond to R, S in the previous
proof). Easy angle chase gives:

/YRT = /XRC =/ MXY — ZMCA
=/BMC — ZMCA
= %ZYX]\/[
=/ZXUM
, 80 MU || TR. Similarly MV || T'S. Now the triangles TRS and MUV are homothetic
4 points.
, with F being the homothety center. The idea is that we can now express all the relevant lengths in terms of M XY
Let a= XY, b=YM,c= MX. Compute:
XR=XC=a-c
YS=YD=a-b
RS=XY-XR-SY=b+c—a

From Thales,
ER _RU _a_,
ES SV a
and finally XFE = XR + %RS =a—c+ b*?T*a = %H, which is precisely the distance from X to M-extouchpoint.
2 points.
O
Having established that, let Z be the midpoint of M-altitude in M XY and N be its foot. It is well-known that Z, I,
are collinear, one can get that for example with homothety mapping the incircle to M-excircle
2 points.
. We are now done, check that PM = NFE from congruent M PZ and ZNFE and MQ = NFE from the rectangle.
2 points.



Problem 4. Find all functions f: Rt — RT such that

fle+yf(2)) =2f(1+y)

for all z,y € RT.

Remark. We denote by R* the set of all positive real numbers. (Toannis Galamatis)

First Solution. The function f(z) = x for all x € R ssatisfies the condition, and we will show it is the only such
function.

Firstly, note that if f(z) # 1 and we have that either x > 1, f(z) < 1 or < 1, f(x) > 1, plugging in = and

1—a
N OET
gives that = 1, a contradiction. Therefore, for all x < 1 we have f(z) < 1 and for all > 1 we have f(x) > 1.
1 point.
Now, assume that f(t) <t for some ¢t € RT, and take
t— f(t)
POV =)
in the starting equation. If we denote s = }fo((t% this gives
fO =) fA+s) = fl+s)=1
as the left-hand side and the f(¢) term on the right cancel out. If we now plug in
r=1+ g, Y= m
2
we obtain that
1= f(14s)= (1+§) ~f(1+y)>1+§
which is a contradiction.
Therefore, f(z) > z for all z € RT.
2 points.

If we apply this inequality to the left-hand side, we obtain that

zf(l+y) >z +yf(z) = fi‘r) < f(“yl)*l

for all 2,y € R™. Plugging in y = 1, we obtain that f(z)/z is bounded by f(2) — 1 for all z € R", and we already know
it’s always at least 1. Define
C = limsup %m)

Tr—r0o0

We easily obtain that f(y,lz;l > C for all ¥ = y+ 1 € (1,00), which rearranges to f(y') > Cy’ +1— C for all y’ > 1.
Additionally, by definition of C, for all & > 0 there exists some 7. > 0 such that x > T. = f(z) < (C + ¢)z. Now,

take some x,y > max{1,7.} and notice that = + yf(z) > 1 and y + 1 > T implies that we have

Cr+C?ry+(1-C)y+1) < fz+yfx) =zfly+1) <x(C+e)(y+1) =Cay + Cax + exy + ex

which rearranges to
c—-1 1
(CQ—C—e)yii( My + )-l—s
x
for all z, y large enough. By fixing 5 and taking = — oo we see that C? —C < e + % < 2¢ and as € was arbitrary, we have

that C> —C' =0so C = 1.
5 points.

To finish, note that there now exists, for every ¢ > 0, a 7. such that y +1 > 7. implies f(y + 1) < (1 +¢)(y + 1) and
inserting this y into the inequality we earlier obtained gives that

flx) _y+ey+e

=(l4e)+°<1+2
z y

for every € RT and as ¢ is arbitrary, we obtain f(z) < z for all z € RT and we are done.

2 points.



Second Solution. We shall firstly prove the following lemma about the behavior of f.

Lema 1. The function f is non-decreasing.

Proof. Assume on the contrary, there are a > b such that f(a) < f(b). Then, ¢ =
(z,y) = (a,c) yields

ﬁ is positive. Now, plugging

SERD =) — flat 5= fr H@) = af 149
Plugging (z,y) = (b, ¢) yields;
SRS =) = 0+ 58 = s FO) b1 4.0
Yielding, a = b, a contradiction. This completes our proof.
3 points.
(I
Now, it is easy to find that f is surjective, indeed, f(z/f(2) + f(z/f(2)) = x.
1 point.
Thus, f would be continuous *.
2 points.
Hence, f(z) =lim, o+ f(z +yf(z)) = zlim, o+ f(1+y) =2f(1).
3 points.

That is, f(z) = Cx, for some C' > 0. Hence, C(z + C?zy) = Cz(1 +y), yielding C = 1. Tt is easy to verify that f(z) = =
indeed satisfies the statement of the problem.

1 point.
Third Solution. For x > 1 we have f(z) > 1 otherwise plugging in y = ﬁ gives us a contradiction.
Applying this to the RHS of the original equation we get f(x + yf(z)) > x.
Putting z = s — €,y = 55—, € — 0 we get f(s) > s forall s e RT.

3 points.
Applying this to the LHS of the original equation, yielding;
fo+n =149t vy crt
1 point.

If there exist ¢ > 1 such that @ > 1. Put K = fif),

Claim 3. f(y+1)>yK" VneN,vyeR".

Proof. We shall prove it through induction. The base is clear. Putting (z,y) = (¢, y) into original equation and assuming
fly+1) > yK" for all y and fixed n:

cfly+1) = fletyf(e) = (c+yfle) - K" > yf(e) K"
gives us f(y+ 1) > yK" — f(y+1) > yK"'
4 points.
O

Back to our problem, fixing y and using the claim letting n — oo we get that such K can’t exist, that is f(x) < z for
z > 1. Since we already proved f(z) > x we have f(z) = z for z > 1, but returning to f(y+1) =y+1>1 +y% gives
us f(x) =z for all z. It is easy to check that f(x) = z indeed satisfies the original equation.

2 points.

1For sake of completeness, in the following we shall provide the outline of the proof of this claim: Since f is non-deceasing, for
an arbitrary positive a, lim,_,,— f(z), lim,_, 4+ f(z) exist and lim,_,,— f(z) < lim,_, ,+ f(z) . Now, we prove these two limits
are equal. Assume for contradiction, b = lim,_, ,— f(z) < lim,_, .+ f(x) = c. Thus, for all z < a we have f(z) <b, for all z > a, we
have f(x) > c. Hence the image of function is a subset of (0, b) U (¢, +00) U {f(a)}. This, can not be the whole R*. The derived
contradiction, completes our proof.



