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Problem 1. We call a pair of distinct numbers (a, b) a binary pair if ab + 1 is a power of two. Given a set S
of n positive integers, what is the maximum possible number of binary pairs in S?

(Oleksii Masalitin)

First Solution. The answer is n− 1, achieved by choosing 2k − 1 for 1 ≤ k ≤ n. One can then easily see that 1, 2k − 1
makes a binary pair for n ≥ k > 1. For the bound, make a graph G with vertices a1, . . . an, and connect (a, b) if a, b
makes a binary pair.

2 points.

The key is the following:

Claim 1. G does not contain a cycle.

Proof. Assume otherwise and suppose:

x1x2 + 1 = 2a1

x2x3 + 1 = 2a2

. . .

xnx1 + 1 = 2an

for positive integers a1, . . . an and n ⩾ 3. WLOG let a1 be the greatest (not necessarily unique). Notice that all xi are
odd, this is just parity. Focus on the following three equations:

xnx1 + 1 = 2an (1)
x1x2 + 1 = 2a1 (2)
x2x3 + 1 = 2a2 (3)

Subtracting (1) from (2) and (3) from (2) results in:

x1(x2 − xn) = 2an(2a1−an − 1) =⇒ x1 | 2a1−an − 1 as x1 is odd

x2(x1 − x3) = 2a2(2a1−a2 − 1) =⇒ x2 | 2a1−a2 − 1 as x2 is odd

3 points.

The bound x1x2 + 1 < (xnx1 + 1)(x2x3 + 1) can be verified by simple expansion. In turn, this gives a2 + an > a1

3 points.

Finally:
2a1 − 1 = x1x2 | (2a1−a2 − 1)(2a1−an − 1) < 2a1 − 2a1−a2 − 2a1−an + 1 ⩽ 2a1 − 1

As (2a1−a2 − 1)(2a1−an − 1) is nonnegative, the divisibility can hold only if it is equal to 0. This would give a1 = an or
a1 = a2, contradicting xn ̸= x2 and x1 ̸= x3 respectively.

As a graph with n vertices not containing cycles can have at most n− 1 edges, the proof of the bound is finished.

2 points.



Second Solution. Here we present an approach using Zsigmondy’s theorem. Assume that T = {b1, . . . bk} is the set of
all indices with the maximal value of ai, call it M . Observe that aj-s in T must not be consecutive, otherwise they would
violate the distinct xi condition. Now we can multiply the equations to get the following:∏

i∈T

(2M − 1) |
∏
i/∈T

(2ai − 1)

2 points.

We get a contradiction with Zsigmondy’s theorem as 2M −1 has a primitive prime divisor not dividing 2n−1 for n < M ,
except for the case M = 6

4 points.

. Assume xixi+1 = 63 for some i.

• if xi = 63, then xi+2 = 63 as 26 is the greatest possible value, contradicting distinctness.

• if xi = 21, one similarly gets xi+2 = 21, again a contradiction.

• the rest of the cases are similar and bruteforce

2 points.

Third Solution. Again, the construction and the comment is the same as in the first solution. For the bound, we claim
the following:
If (a, b), (a, c) are two binary pairs with a > b, c, then b = c.

1 point.

Proof. WLOG assume b ≥ c. As ac+ 1 and ab+ 1 are powers of 2, we have:

ac+ 1 | ab+ 1

ac+ 1 | a(b− c)

ac+ 1 | b− c

4 points.

But, if b > c, then
0 < b− c < b < a < ac+ 1

2 points.

, contradiction.

Now, all elements of S except the smallest can be the larger element in at most one binary pair, giving the bound n− 1

1 point.

Comment: One can show no cycles of odd length with little effort: All powers of 2 involved are at least 4. Now
subtract one and multiply all equations together, and finish by mod 4.



Problem 2. Let n be a positive integer. The numbers 1, 2, . . . , 2n + 1 are arranged in a circle in that order,
and some of them are marked.
We define, for each k such that 1 ⩽ k ⩽ 2n + 1, the interval Ik to be the closed circular interval starting at k
and ending at k + n (taking remainders modulo 2n+ 1 if k + n > 2n+ 1). We call an interval Ik magical if it
contains strictly more than half of all the marked elements.
Prove that the following two statements are equivalent:

1. At least n+ 1 of the intervals I1, I2, . . . , I2n+1 are magical.
2. The number of marked numbers is odd.

(Andrei Constantinescu)

First Solution. Let S be the set containing all the marked numbers and Si = S∩Ii. Note that Si∩Si+n = ∅ or {i+n}.
So for each i we have that

|Si+n| =

{
|S| − |Si|+ 1, if i+ n ∈ S

|S| − |Si|, otherwise.

2 points.

Suppose |S| is odd. For each interval, Ii, that isn’t magical we have that |Si| < |S|
2

(since the equality can’t hold) hence
|Si+n| ≥ |S| − |Si| > |S| − |S|

2
= |S|

2
so Ii+n is magical. So for each non magical interval we can find a unique magical

one, therefor we must have at least n+ 1 magical intervals.

4 points.

Now suppose |S| is even. For each magical interval Ii, we have that |Si| > |S|
2

hence |Si+n| ≤ |S|−|Si|+1 < |S|− |S|
2
+1 =

|S|
2

+ 1 =⇒ |Si+n| ≤ |S|
2

so Ii+n is not magical. Since for each magical interval we can find a unique non magical one,
there must be at least n+ 1 non magical intervals, so less that n+ 1 magical ones.

4 points.

Second Solution. Represent the remainders modulo 2k + 1 in a circle in ascending order. For the rest of the solution,
t-good means the interval [t, t + k] is magical, and the set being very good means it satisfies property (1). Label the
vertices of the graph as (0, 1, 2, . . . , 2k). If S is t-good, draw an edge between t and t+ k (taken modulo 2k+1). Now we
prove both directions:

• Let |S| = 2l be very good. The critical observation is the following: there is a node with degree 2. Since S is very
good, there are at least k + 1 edges. Thus, the total sum of degrees is at least 2k + 2.

1 point.

By the pigeonhole principle, there is a node with degree 2. Let a be the value of this node.

1 point.

By definition, the intervals [a, a + k] and [a − k, a] each contain more than half of the elements of S, i.e., at least
l + 1 elements each. These two intervals share exactly one element.

2 points.

Thus, the total number of distinct elements of S in these intervals is at least:

2l + 2 (if a /∈ S), or 2l + 1 (if a ∈ S).

This contradicts |S| = 2l. Hence, if S is very good, S must have an odd number of elements.

1 point.

• Now let |S| = 2l−1. A similar lemma applies: every node has degree at least 1. Fix a value x. The intervals [x−k, x]
and [x, x + k] cover the entire residue class modulo 2k + 1 and share exactly one element. Now we split into two
cases:

– If x ∈ S, the remaining elements of S are in two disjoint intervals [x − k, x − 1] and [x + 1, x + k]. By the
pigeonhole principle, one of these intervals contains at least l − 1 elements. Adding x creates a good interval
with one of its endpoints at x, so x has degree at least 1.

– If x /∈ S, the elements of S are in two disjoint intervals [x − k, x − 1] and [x + 1, x + k]. By the pigeonhole
principle, one of these intervals contains at least l elements, so the conclusion is the same as above.

In either case, x has degree at least 1.

3 points.

Similarly, every node has degree at least 1, so the total sum of degrees is at least 2k+1. By the handshake lemma,
the total sum of degrees is at least 2k + 2. This gives at least k + 1 edges. Thus, S is indeed x very good.

2 points.



Problem 3. Let ω be a semicircle with diameter AB and let M be the midpoint of AB. Let X,Y be the points
in the same half-plane as ω with respect to the line AB such that AMXY is a parallelogram. Let I be the
incenter of the triangle MXY . Lines MX,MY intersect ω in points C,D respectively. Let T be the intersection
of AC and BD. The line MT intersects XY in E. If P is the intersection of EI and AB, and Q is the projection
of E onto the line AB, show that M is the midpoint of PQ.

(Michal Pecho)

Solution. We will work in the context of a triangle MXY . The solution is in two parts:
Claim 2. E is the M-excircle touch point with XY

We present two proofs:

Proof. We first claim that TCD is tangent to both MX and MY . Observe:

∠MCT = ∠MCA = ∠CAM = ∠CAB = ∠CDB = ∠CDT

where the angles are directed. This shows that MX is tangent to DCT . Analogous proof gives MY tangent to CDT .

2 points.

Now we claim that the tangent to DCT at T is parallel to XY . The cleanest way is through negative inversion in T
fixing the circle with diameter AB. This sends (CDT ) into AB and fixes the tangent. The tangency is preserved, so the
two lines are parallel, as desired.

1 point.

If the mentioned tangent meets MX and MY at R,S respectively, we have shown that CDT is M -excircle in MRS.
Consider the homothety centred at M that maps RS to XY . It also maps T into E, but it also sends the excircle of
MRS into the excircle of MXY , hence sending the M -touchpoint in MRS (i.e. T ) into E, which is what we wanted to
show.

3 points.

Proof. Let U, V be points of XY such that U,X, Y, V lie on XY in that order, and UX = XM,V Y = YM . Also let
R,S be the intersections of XY with AC, BD respectively (note that these do not correspond to R,S in the previous
proof). Easy angle chase gives:

∠Y RT = ∠XRC = ∠MXY − ∠MCA

= ∠BMC − ∠MCA

=
1

2
∠Y XM

= ∠XUM

, so MU ∥ TR. Similarly MV ∥ TS. Now the triangles TRS and MUV are homothetic

4 points.

, with E being the homothety center. The idea is that we can now express all the relevant lengths in terms of MXY .
Let a = XY, b = YM, c = MX. Compute:

XR = XC = a− c

Y S = Y D = a− b

RS = XY −XR− SY = b+ c− a

From Thales,

ER

ES
=

RU

SV
=

a

a
= 1

and finally XE = XR+ 1
2
RS = a− c+ b+c−a

2
= a+b−c

2
, which is precisely the distance from X to M -extouchpoint.

2 points.

Having established that, let Z be the midpoint of M -altitude in MXY and N be its foot. It is well-known that Z, I, E
are collinear, one can get that for example with homothety mapping the incircle to M -excircle

2 points.

. We are now done, check that PM = NE from congruent MPZ and ZNE and MQ = NE from the rectangle.

2 points.



Problem 4. Find all functions f : R+ → R+ such that

f(x+ yf(x)) = xf(1 + y)

for all x, y ∈ R+.

Remark. We denote by R+ the set of all positive real numbers. (Ioannis Galamatis)

First Solution. The function f(x) = x for all x ∈ R+ ssatisfies the condition, and we will show it is the only such
function.
Firstly, note that if f(x) ̸= 1 and we have that either x > 1, f(x) < 1 or x < 1, f(x) > 1, plugging in x and

y =
1− x

f(x)− 1
> 0

gives that x = 1, a contradiction. Therefore, for all x < 1 we have f(x) ⩽ 1 and for all x > 1 we have f(x) ⩾ 1.

1 point.

Now, assume that f(t) < t for some t ∈ R+, and take

x = f(t), y =
t− f(t)

f(f(t))

in the starting equation. If we denote s = t−f(t)
f(f(t))

this gives

f(t) = f(t)f(1 + s) =⇒ f(1 + s) = 1

as the left-hand side and the f(t) term on the right cancel out. If we now plug in

x = 1 +
s

2
, y =

s

2f
(
1 + s

2

)
we obtain that

1 = f(1 + s) =
(
1 +

s

2

)
· f(1 + y) ⩾ 1 +

s

2
which is a contradiction.
Therefore, f(x) ⩾ x for all x ∈ R+.

2 points.

If we apply this inequality to the left-hand side, we obtain that

xf(1 + y) ⩾ x+ yf(x) ⇐⇒ f(x)

x
⩽

f(y + 1)− 1

y

for all x, y ∈ R+. Plugging in y = 1, we obtain that f(x)/x is bounded by f(2)− 1 for all x ∈ R+, and we already know
it’s always at least 1. Define

C = lim sup
x→∞

f(x)

x
.

We easily obtain that f(y′)−1
y′−1

⩾ C for all y′ = y + 1 ∈ ⟨1,∞⟩, which rearranges to f(y′) ⩾ Cy′ + 1 − C for all y′ > 1.
Additionally, by definition of C, for all ε > 0 there exists some Tε > 0 such that x > Tε =⇒ f(x) ⩽ (C + ε)x. Now,
take some x, y > max{1, Tε} and notice that x+ yf(x) > 1 and y + 1 > Tε implies that we have

Cx+ C2xy + (1− C)(y + 1) ⩽ f(x+ yf(x)) = xf(y + 1) ⩽ x(C + ε)(y + 1) = Cxy + Cx+ εxy + εx

which rearranges to

(C2 − C − ε)y ⩽
(C − 1)(y + 1)

x
+ ε

for all x, y large enough. By fixing y and taking x → ∞ we see that C2 −C ⩽ ε+ ε
y
< 2ε and as ε was arbitrary, we have

that C2 − C = 0 so C = 1.

5 points.

To finish, note that there now exists, for every ε > 0, a Tε such that y + 1 > Tε implies f(y + 1) ⩽ (1 + ε)(y + 1) and
inserting this y into the inequality we earlier obtained gives that

f(x)

x
⩽

y + εy + ε

y
= (1 + ε) +

ε

y
< 1 + 2ε

for every x ∈ R+ and as ε is arbitrary, we obtain f(x) ⩽ x for all x ∈ R+ and we are done.

2 points.



Second Solution. We shall firstly prove the following lemma about the behavior of f .

Lema 1. The function f is non-decreasing.

Proof. Assume on the contrary, there are a > b such that f(a) < f(b). Then, c = a−b
f(b)−f(a)

is positive. Now, plugging
(x, y) = (a, c) yields

f(
af(b)− bf(a)

f(b)− f(a)
) = f(a+

a− b

f(b)− f(a)
f(a)) = af(1 + c)

Plugging (x, y) = (b, c) yields;

f(
af(b)− bf(a)

f(b)− f(a)
) = f(b+

a− b

f(b)− f(a)
f(b)) = bf(1 + c)

Yielding, a = b, a contradiction. This completes our proof.

3 points.

Now, it is easy to find that f is surjective, indeed, f(x/f(2) + f(x/f(2)) = x.

1 point.

Thus, f would be continuous 1.

2 points.

Hence, f(x) = limy→0+ f(x+ yf(x)) = x limy→0+ f(1 + y) = xf(1).

3 points.

That is, f(x) = Cx, for some C > 0. Hence, C(x+C2xy) = Cx(1+ y), yielding C = 1. It is easy to verify that f(x) = x
indeed satisfies the statement of the problem.

1 point.

Third Solution. For x > 1 we have f(x) ≥ 1 otherwise plugging in y = 1−x
f(x)−1

gives us a contradiction.
Applying this to the RHS of the original equation we get f(x+ yf(x)) ≥ x.
Putting x = s− ϵ, y = ϵ

f(s−ϵ)
, ϵ → 0 we get f(s) ≥ s for all s ∈ R+.

3 points.

Applying this to the LHS of the original equation, yielding;

f(y + 1) ≥ 1 + y
f(x)

x
∀x, y ∈ R+

1 point.

If there exist c > 1 such that f(c)
c

> 1. Put K = f(c)
c

.

Claim 3. f(y + 1) ≥ yKn ∀n ∈ N, ∀y ∈ R+.

Proof. We shall prove it through induction. The base is clear. Putting (x, y) = (c, y) into original equation and assuming
f(y + 1) ≥ yKn for all y and fixed n:

cf(y + 1) = f(c+ yf(c)) ≥ (c+ yf(c)− 1)Kn ≥ yf(c)Kn

gives us f(y + 1) ≥ yKn =⇒ f(y + 1) ≥ yKn+1.

4 points.

Back to our problem, fixing y and using the claim letting n → ∞ we get that such K can’t exist, that is f(x) ≤ x for
x > 1. Since we already proved f(x) ≥ x we have f(x) = x for x > 1, but returning to f(y+1) = y+1 ≥ 1+ y f(x)

x
gives

us f(x) = x for all x. It is easy to check that f(x) = x indeed satisfies the original equation.

2 points.

1For sake of completeness, in the following we shall provide the outline of the proof of this claim: Since f is non-deceasing, for
an arbitrary positive a, limx→a− f(x) , limx→a+ f(x) exist and limx→a− f(x) ≤ limx→a+ f(x) . Now, we prove these two limits
are equal. Assume for contradiction, b = limx→a− f(x) < limx→a+ f(x) = c. Thus, for all x < a we have f(x) ≤ b, for all x > a, we
have f(x) ≥ c. Hence the image of function is a subset of (0, b) ∪ (c, +∞) ∪ {f(a)}. This, can not be the whole R+. The derived
contradiction, completes our proof.


