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Problem 1. Wiske wrote a 2024-digit positive integer on the blackboard. In each round of the game she erases
the last digit of the integer, let this digit be d, and writes down the sum of the remaining number and 2d in
place of the old number. She repeats the same steps with the newly obtained number. After a certain number
of rounds, Wiske found that the new number obtained was the same as the number in the last round and she
stopped the game. What is the smallest possible 2024-digit integer that Wiske started with in this game?

(Kai Chen)

Solution. Firstly, we claim that the last number Wiske obtained is 19.

In the last round, let the last digit of the number be d where 0 ⩽ d ⩽ 9, and the remaining digits form an integer
x. The number at the beginning of this round is then 10x + d, and the new number obtained in this round is x + 2d.
Since the two numbers are the same, 10x+ d = x+ 2d, i.e., 9x = d.
Because 0 ⩽ d ⩽ 9 and we cannot have x = d = 0 because all newly written numbers are positive, the only solution is
x = 1 and d = 9. The last number is then 19.

2 points.

Secondly, we claim that the numbers in all previous rounds are divisible by 19. From 2(10x + d) = 19x + (x + 2d), it
follows that 2(10x + d) ≡ x + 2d (mod 19). Since the last number is 19, it can be concluded by reverse induction that
the numbers in all rounds of the game are divisible by 19.

3 points.

From the same induction we get that the number Wiske started with being divisible by 19 is a sufficient condition as
well.

1 point.

Finally, our goal is to find the smallest 2024-digit number which is divisible by 19 because the sequence of the numbers
in all rounds is strictly descending:

10x+ d > x+ 2d, if x > 1.

Per the Fermat’s Little Theorem, we get 1018 ≡ 1 (mod 19). We have,

102023 ≡ 107 (mod 19), because 2023 = 112× 18 + 7.
107 = 1003 × 10 ≡ 53 × 10 = 1250 ≡ 15 (mod 19).
102023 + 4 ≡ 0 (mod 19).

3 points.

Thus, 102023 + 4 is the smallest 2024-digit number which is divisible by 19. It is the smallest possible 2024-digit integer
that Wiske started with in the game.

1 point.



Problem 2. Let X be the largest possible value of the expression

min{bc, 2− a2}+min{ac, 2− b2}+min{ab, 2− c2},

where a, b and c are positive real numbers. Similarly, let Y be the smallest possible value of the expression

max{a2, 2− bc}+max{b2, 2− ac}+max{c2, 2− ab},

where a, b and c are positive real numbers. Prove that X = Y . (Ognjen Tešić)

First Solution. Observe that min{bc, 2− a2} = 2+min{bc− 2,−a2} = 2−max{−(bc− 2), a2} = 2−max{2− bc, a2},
so X = Y is equivalent to
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3 points.

For a = b = c = 1 we get that min
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cyc max{a2, 2− bc}
}
≤ 3, so we need to show that∑
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1 point.

but since max{x, y} ≥ x+y
2

we have that

2 points.
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4 points.

Second Solution. An alternative proof of the last inequality. Suppose, for the sake of contradiction, that∑
cyc

max{a2, 2− bc} < 3

but since min{a2, 2− bc} ≤ max{a2, 2− bc} we have that∑
cyc

min{a2, 2− bc} ≤
∑
cyc

max{a2, 2− bc} < 3

by adding the two inequalities we get ∑
cyc

max{a2, 2− bc}+max{a2, 2− bc} < 6

1 point.

now we use the fact that min{x, y}+max{x, y} = x+ y

1 point.

to get that ∑
cyc

a2 + 2− bc < 6,

contradiction by AG inequality as in the First Solution.

4 points.



Problem 3. Let ABC be a triangle with incenter I and incircle ω. Let ℓ be the tangent to ω parallel to BC
and distinct from BC. Let D be the intersection of ℓ and AC, and let M be the midpoint of ID. Prove that
∠AMD = ∠DBC.

(Weihua Wang)
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First Solution. Let E be the intersection point of line ℓ with AB, and let F be the intersection point of DI with BC.
Since ℓ ∥ BC and ℓ is tangent to circle ω, we have

∠CDI = ∠EDI = ∠CFI = 90◦ − C

2
,

∠ADI = ∠BFI = 90◦ +
C

2
= ∠AIB.

2 points.

Noting that ∠DAI = ∠BAI and ∠ABI = ∠FBI, we obtain △ADI ∼ △AIB ∼ △IFB. Therefore,

2 points.
AD
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.

4 points.

Thus, △AMD ∼ △DBF , so ∠AMD = ∠DBC.

2 points.
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Second Solution. Let BC = a, CA = b, AB = c, and let the inradius of △ABC be r. Suppose ω is tangent to AC at
K, and let line ℓ intersect the circumcircle of △ADM again at E. Let the area of △ABC be S. Then, from the formula

S =
1

2
(a+ b+ c) · r =

1

2
ab sinC,

we have

a+ b+ c

a
=

b sinC

r
⇒ (b+ c− a)/2 + a

a
=

b

(2r)/ sinC
,



2 points.

which implies

AK +BC

BC
=

AC

CD
⇒ AK

BC
=

AD

CD
.

2 points.

Noting that ∠AEM = ∠CDI = ∠EDI = ∠EAM = 90◦ − C
2
, we conclude ME = MA. Applying Ptolemy’s theorem to

quadrilateral ADME and noting that AE = 2AM · sin C
2
, we get

AM ·DE = EM ·AD +AE ·DM = AM ·AD + 2AM · sin C

2
·DM.

3 points.

Thus,

DE = AD + 2DM · sin C

2
= AD +DI · sin C

2
= AD +DK = AK.

1 point.

Therefore, DE
BC

= AD
CD

, which implies △AED ∼ △DBC. Hence, ∠AMD = ∠AED = ∠DBC.

2 points.



Problem 4. Let F be a family of (distinct) subsets of the set {1, 2, . . . , n} such that for all A,B ∈ F we have
that Ac ∪B ∈ F , where Ac is the set of all members of {1, 2, . . . , n} that are not in A.

Prove that every k ∈ {1, 2, . . . , n} appears in at least half of the sets in F .

(Stijn Cambie, Mohammad Javad Moghaddas Mehr)

First Solution. We start out by “cleaning up” our set family. We denote [n] = {1, 2, . . . , n}, and refer to it as the ground
set.
Firstly, if there exists a number x ∈ {1, 2, . . . n} which appears in every member of the family F , remove it from all
members of the family. Proving the claim of the problem for the remaining family clearly suffices, as x is in all sets of
the family, and so in at least half of them.

0 points.

Additionally, while there exist two elements x, y such that for every A ∈ F we have

x ∈ A ⇐⇒ y ∈ A

remove one of them from all the sets of the family, and do this until no such pairs remain. Proving the problem claim
for the remaining family of sets clearly suffices, as every removed number has a corresponding number that is still in the
ground set and appears in exactly as many sets of the family as the removed member originally did.

1 point.

Now, fix any pair of distinct elements {x, y} of the ground set. We wish to show that there exist sets Ax,y, Ay,x ∈ F
such that x ∈ Ax,y, x ̸∈ Ay,x and y ∈ Ay,x, y ̸∈ Ax,y. As we ensured that x, y do not always appear together, one of them
must exist. Assume without loss of generality that it is Ax,y.
Assuming that any set Ay,x ∈ F containing y but not x does not exist, this implies that for every A ∈ F we have

x ∈ A =⇒ y ∈ A.

Now, as y is not in every set of F , there exists a set B such that y ̸∈ B and the previous implication implies that x ̸∈ B.
However, if we now consider the set Ac

x,y ∪B ∈ F , it contains y but does not contain x, contradicting the nonexistence
of a suitable Ay,x ∈ F .

2 points.

We now aim to show that for every x ∈ [n], we have that {x}c ∈ F . Fix one such x, take some set B ∈ F such that
x ̸∈ B and consider the set

B ∪
⋃
y ̸=x

Ac
x,y.

This set contains all elements y ̸= x, so it must be equal to {x}c. It is a member of F by repeated n− 1-fold application
of the condition on members of F .

4 points.

To finish, consider some x ∈ [n] and some B ∈ F not containing x. We then have that {x} ∪ B ∈ F , so for every set in
F that does not contain x we can find a unique one that does and we are done.

3 points.

.

Second Solution. First we observe that for A,B ∈ F by using the rule on Ac ∪B and B we get that

(Ac ∪B)c ∪B = (A ∩Bc) ∪B = (A ∪B) ∩ (Bc ∪B) = A ∪B ∈ F . (1)

2 points.

Now we take an arbitrary x ∈ [n], let A = {S ∈ F : x ∈ S} and B = {S ∈ F : x /∈ S}. Then the set T :=
⋃

S∈B S is in F
by using (1). Note that x /∈ T and that every S ∈ B is a subset of T .

3 points.

Now we’ll prove that the function f : B → A defined by f(S) = T c ∪ S is an injection.

3 points.



Suppose there exists B1, B2 ∈ B such that T c ∪B1 = T c ∪B2

=⇒ T ∩ (T c ∪B1) = T ∩ (T c ∪B2)

=⇒ (T ∩ T c) ∪ (T ∩B1) = (T ∩ T c) ∪ (T ∩B2)

=⇒ ∅ ∪B1 = ∅ ∪B2

=⇒ B1 = B2

where the third implication holds since B1, B2 ⊆ T . So f is injective =⇒ |A| ⩾ |B|.

2 points.

Third Solution. Obtain that for no two elements x, y ∈ [n] holds x ∈ A ⇐⇒ y ∈ A for every A ∈ F as in the first
solution.

1 point.

For arbitrary x, let T be the largest set not containing x. We claim T = {x}c.
Assume the opposite, then every set A ∈ F containing x needs to contain T c because otherwise |Ac ∪ T | > |T |.

2 points.

Show that for any two sets A,B ∈ F their union A ∪B ∈ F is also in the family as shown in the Second Solution.

2 points.

If A ∈ F contains an element of T c, then |A ∪ T c| > |T | so A must contain x.

1 point.

These to combined imply that x, y ∈ T c belong to the exact same sets in F which is a contradiction with the claim at
the beginning.

1 point.

Since we have {x}c ∈ F we can finish the solution as in the First Solution.

3 points.


