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Problem 1. Determine all sets of real numbers S such that:

• 1 is the smallest element of S,

• for all x, y ∈ S such that x > y,
√
x2 − y2 ∈ S.

(Adian Anibal Santos Sepčić)

Solution. All such sets are the set
√
N = {

√
n | n ∈ N} and the sets

√
[n] = {

√
k | k ⩽ n, k ∈ N} for any n ∈ N. It’s

easy to check that all such sets satisfy the problem’s condition.

1 point.

We will now show that any S that satisfies the two conditions of the problem is of this form. It suffices to show that S
can only contain square roots of positive integers and that

√
n ∈ S implies that

√
m ∈ S for any m ⩽ n.

First, note that we have 1 ∈ S so for any x ∈ S with x > 1 we have
√
x2 − 1 ∈ S. Repeated application of this gives that√

x2 − n ∈ S for any n ∈ N such that n < x2.

3 points.

Now, assume that some number x ∈ S is not the square root of an integer. We then immediately have 0 < x2 −⌊x2⌋ < 1
as x2 is not an integer, and the above consideration gives that

√
x2 − ⌊x2⌋ ∈ S and is strictly less than 1, which is a

contradiction with 1 = min(S). Therefore, we conclude that any element of S has to be the square root of an integer.

5 points.

Now, take some
√
n ∈ S. The above consideration immediately gives

√
n− 1 ∈ S and we can conclude by induction that

any smaller square root of an integer must also be a member of S, and we are done.

1 point.

Notes on marking:

• Any proof that shows that the members of S must necessarily be square roots of positive integers is worth 8 points.
Of the other 2 points, one is assigned for correctly and completely writing the solution set, and one for noting that
if
√
n ∈ S, then all smaller square roots

√
m must also be in S. This must be explicitly commented on.



Problem 2. Let ABC be a triangle such that ∠BAC = 90◦. The incircle of triangle ABC is tangent to the
sides BC, CA, AB at D, E, F respectively. Let M be the midpoint of EF . Let P be the projection of A onto
BC and let K be the intersection of MP and AD. Prove that the circumcircles of triangles AFE and PDK
have equal radius.

(Kyprianos-Iason Prodromidis)

First Solution. Let S = EF ∩ BC, and let I be the center of the incircle of △ABC and let H be the orthocenter of
△DEF . Easy angle chase shows ∠FDE = 45◦, and hence we have DH = EF (both being equal to

√
2

2
times the radius

of the incircle of △ABC). Also, as DIAH is a parallelogram, AH ⊥ BC and DH ⊥ EF which give AHP collinear.
Our goal is to show DKHP cyclic, because then diameters of the circles in question would be DH and EF respectively
(latter because HP ⊥ DP ), which we showed are equal.

3 points.

The main claim is the following: IS ⊥ AD (This holds regardless of the right angle). One can prove it either via complex
numbers (setting (DEF ) as the unit circle) or by showing that AD is a polar of S with respect to the incircle of △ABC.
We will omit the proofs because the lemma is well-known.
Also, AMPS is cyclic because of the right angles at M,P

2 points.

Now we have:
∠HPK = ∠APM = ∠ASM = ∠ISM,

where the second equality follows from the AMPS being cyclic, the third equality follows from AEIF being a square,
i.e. I is the reflection of A across EF .

2 points.

Using the lemma we have:

∠ISM = ∠DAM = ∠KAM = ∠HDK,

where the first equality holds because IS ⊥ AD and SM ⊥ AM , and the last equality follows from DH ∥ AM .

2 points.

These 2 chains of equality show ∠HPK = ∠HDK, which exactly means HPDK is cyclic, and we conclude from the
first paragraph.

1 point.

Second Solution. Let I be the circumcircle of DEF , notice that AEFI is a square. Let BC,EF meet at S. It is clear
that AMKS is cyclic. Also A lies on the D-symmedian so since IS ⊥ AD, if IS,AD intersect at X, this point lies on
the circumcircles of IEF,AMK.

3 points.

Let circles of DKL,AMK intersect at Y , it follows that ∠DLK = ∠DYK. But, ∠DLK = ∠KTD + ∠MSA =
90◦ − ∠SDA+ ∠MSA = ∠DSM = ∠MYK. It follows that Y is on DM .

2 points.

Now, we shall show that the feet of E and F on DF and DE, respectively lie on the circle of DKL. By the theorem of
radical axis, if circles FMY,EAF meet at Z, then Z would be on DF . We also have ∠EZF = 90◦, since ∠EAF = 90◦.
Analogously, if the circles of EMY,EAF meet at W , we can generate a similar result. Thus, the circles of DKL,DZW
would be the same, i.e., identical. If H is the orthocenter of DEF , we have RDKL = RDZW = DH

2
= IA

2
= RAEF , as

desired.

5 points.

Notes on marking:

• Citing the lemma as well-known won’t cause point loss.

• In all incomplete computational solutions, only the geometric facts derived from the calculations will be worth
points.



Problem 3. Let n be a positive integer. Let Bn be the set of all binary strings of length n. For a binary string
s1s2 . . . sn, we define its twist in the following way. First, we count how many blocks of consecutive digits it has.
Denote this number by b. Then, we replace sb with 1 − sb. A string a is said to be a descendant of b if a can
be obtained from b through a finite number of twists. A subset of Bn is called divided if no two of its members
have a common descendant. Find the largest possible cardinality of a divided subset of Bn.

(Viktor Simjanoski)

Solution. For a string s, denote its twist by f(s), and the number of blocks of consecutive digits it has by b(s). Construct
an undirected graph G on Bn with edges (s, f(s)) for all s ∈ Bn, and note that the largest possible cardinality of a divided
subset of Bn is the number of connected components of the graph.
Each connected component of G contains exactly one cycle, and we aim to show that each cycle in the graph has a length
of exactly 2.

1 point.

Assume that there exists a cycle A ⊆ Bn which is not of length 2. First, fix some s ∈ A.
We wish to show that 1 < b(s) < n. If we have b(s) = 1, then s is either the string with all ones or the string with all
zeroes, and we can easily see that f(s) = f3(s) and s ̸= f(f(s)), which contradicts s ∈ A. Similarly, if b(s) = n then s is
one of the two alternating strings and we arrive to the same conclusion.

1 point.

Now consider x = sb(s)−1, y = sb(s), z = sb(s)+1. A twist replaces y with 1− y, and depending on x, z changes b(s) in the
following ways:

• if x = z ̸= y, we have b(f(s)) = b(s)− 2.

• if x = y = z, we have b(f(s)) = b(s) + 2.

• if x ̸= y = z or x = y ̸= z, we have b(f(s)) = b(s) and moreover we see that f(f(s)) = s and the connected
component of s has a cycle of length 2 so s ̸∈ A.

We therefore see that if s ∈ A, we have b(f(s)) = b(s)± 2.

1 point.

Now, consider some s ∈ A. We then have fk(s) = s for some k ∈ N. Take s such that b(s) ⩾ b(fm(s)) for any 1 ⩽ m < k,
i.e. the element of the cycle with the largest number of blocks.
We have b(f(s)) = b(s) − 2 = b(f−1(s)) by maximality and the previous proof. Notice that the application of f only
changes the positions in s which are of the same parity as b(s). We can see (as b(s) = b(f−1(s)) + 2 that sb(s)−3 =
sb(s)−1 ̸= sb(s)−2 and by similar reasoning sb(s)−1 = sb(s)+1 ̸= sb(s).

1 point.

Now, consider the least t > 0 such that b(f t(s)) = b(s). By minimality of t, it follows that f t(s)b(s) = 1− sb(s) but as we
have sb(s)+1 = 1 − sb(s) = sb(s)−1 we obtain that b(f(f t(s))) = b(s) + 2 which contradicts the maximality of b(s) in A,
so no such component A can exist.

4 points.

Now, let us count the possible cycles of length 2. Each cycle of length 2 occurs when we have f(f(s)) = s and b(s) =
b(f(s)), which gives 2 ⩽ b(s) ⩽ n− 1.
We count by fixing either the left or right of the position b(s) = k in a string s as one of k − 1 "break" points between
0/1 blocks in the string s and then counting that the other k − 2 block "breakpoints" can be assigned in

(
n−3
k−2

)
ways to

the remaining n− 3 spots between two symbols of s, with each assignment of blocks giving two distinct outcomes due to
the choice of 0/1 in the starting block. This gives a total of

n−1∑
k=2

2

(
n− 3

k − 2

)
= 2n−2

different cycles of length 2 and we are done.

2 points.



Problem 4. Let f : N → N be a function such that for all positive integers x and y, the number f(x) + y is a
perfect square if and only if x+ f(y) is a perfect square. Prove that f is injective.

Remark. A function f : N → N is injective if for all pairs (x, y) of distinct positive integers, f(x) ̸= f(y) holds.

(Ivan Novak)

Solution. Suppose for the sake of contradiction that there exist positive integers a, b and c such that f(a) = f(b) = c
and a > b. Consider any x >

√
c.

Then, since x2 − c+ c = x2 − c+ f(a) = x2 − c+ f(b) is a square, both f(x2−c)+a and f(x2−c)+b are squares. Since
a− b > 0, we have the following bound:

a− b = (f(x2 − c) + a)− (f(x2 − c) + b) >
√

f(x2 − c) + a+
√

f(x2 − c) + b.

This implies that the function x 7→ f(x2 − c) obtains only finitely many values since otherwise the bound wouldn’t hold.
By the pigeonhole principle, the expression f(x2 − c) obtains some fixed value m for infinitely many positive integers x.

1 point.

Consider a positive integer y >
√
m. Then y2 − m + f(x2 − c) = y2 for infinitely many values of x. This implies that

f(y2 −m) + x2 − c is a square for infinitely many values of x. This implies f(y2 −m)− c = 0, since it can be written as
a difference of squares in infinitely many ways. Thus, f(y2 −m) = c for every y >

√
m.

1 point.

Now, f(y2 − m) = c for infinitely many y, so with the same argumentation as above we get f(x2 − c) = m for every
x >

√
c.

Lemma. There exists a positive integer M such that for every positive integer z we have f(z) ⩽ M or f(z) ≡ m + 2
(mod 4)
Proof. If z = x2 − c for some positive integer x then we have f(z) = m.

Now assume z ̸= x2 − c for all positive integers x.
Let y ∈ N, y >

√
m. If f(z)+y2−m is a square, then z+f(y2−m) is a square, but f(y2−m) = c, so this is contradiction

with the choice of z.
So f(z) + y2 −m ̸= x2 for all positive integers x.
From this, we have f(z) ̸= x2 − y2 +m for all positive integers x i y such that y >

√
m.

Let y1 be the smallest positive integer such that y1 >
√
m.

For every y ⩾ y1 we have f(z) ̸= (y+1)2−y2+m = 2y+1+m, so f(z) is either smaller than 2y1+1+m or f(z)−m ̸≡ 1
(mod 2).
For every y ⩾ y1 we have f(z) ̸= (y+2)2−y2+m = 4y+4+m, so f(z) is either smaller than 4y1+4+m or f(z)−m ̸≡ 0
(mod 4).
Now M = 4y1 + 4 +m satisfies the claim of the lemma.

5 points.

Take M which satisfies the lemma. Now take w such that w+1, w+2, ..., w+M are not squares, and w+m ≡ 0 (mod 4).
For some d >

√
f(w)

we have d2 − f(w) + f(w) is a square so f(d2 − f(w)) + w must be a square, but using the lemma on z = d2 − f(w) we
get that f(d2 − f(w)) + w is either among w + 1, w + 2, ..., w +M or congruent 2 +m + w ≡ 2 modulo 4, so it cannot
be a square.
Contradiction with the starting assumption, so f must be injective.

3 points.


