PROBLEMS AND SOLUTIONS OF THE 12^{TH} EUROPEAN MATHEMATICAL CUP
$9^{\text {th }}$ December 2023-17 ${ }^{\text {th }}$ December 2023
Senior Category

Problem 1. Determine all sets of real numbers S such that:

- 1 is the smallest element of S,
- for all $x, y \in S$ such that $x>y, \sqrt{x^{2}-y^{2}} \in S$.
(Adian Anibal Santos Sepčić)

Solution. All such sets are the set $\sqrt{\mathbb{N}}=\{\sqrt{n} \mid n \in \mathbb{N}\}$ and the sets $\sqrt{[n]}=\{\sqrt{k} \mid k \leqslant n, k \in \mathbb{N}\}$ for any $n \in \mathbb{N}$. It's easy to check that all such sets satisfy the problem's condition.

1 point.
We will now show that any S that satisfies the two conditions of the problem is of this form. It suffices to show that S can only contain square roots of positive integers and that $\sqrt{n} \in S$ implies that $\sqrt{m} \in S$ for any $m \leqslant n$.
First, note that we have $1 \in S$ so for any $x \in S$ with $x>1$ we have $\sqrt{x^{2}-1} \in S$. Repeated application of this gives that $\sqrt{x^{2}-n} \in S$ for any $n \in \mathbb{N}$ such that $n<x^{2}$.

3 points.
Now, assume that some number $x \in S$ is not the square root of an integer. We then immediately have $0<x^{2}-\left\lfloor x^{2}\right\rfloor<1$ as x^{2} is not an integer, and the above consideration gives that $\sqrt{x^{2}-\left\lfloor x^{2}\right\rfloor} \in S$ and is strictly less than 1 , which is a contradiction with $1=\min (S)$. Therefore, we conclude that any element of S has to be the square root of an integer.

5 points.
Now, take some $\sqrt{n} \in S$. The above consideration immediately gives $\sqrt{n-1} \in S$ and we can conclude by induction that any smaller square root of an integer must also be a member of S, and we are done.

1 point.
Notes on marking:

- Any proof that shows that the members of S must necessarily be square roots of positive integers is worth 8 points. Of the other 2 points, one is assigned for correctly and completely writing the solution set, and one for noting that if $\sqrt{n} \in S$, then all smaller square roots \sqrt{m} must also be in S. This must be explicitly commented on.

Problem 2. Let $A B C$ be a triangle such that $\angle B A C=90^{\circ}$. The incircle of triangle $A B C$ is tangent to the sides $\overline{B C}, \overline{C A}, \overline{A B}$ at D, E, F respectively. Let M be the midpoint of $\overline{E F}$. Let P be the projection of A onto $B C$ and let K be the intersection of $M P$ and $A D$. Prove that the circumcircles of triangles $A F E$ and $P D K$ have equal radius.
(Kyprianos-Iason Prodromidis)

First Solution. Let $S=E F \cap B C$, and let I be the center of the incircle of $\triangle A B C$ and let H be the orthocenter of $\triangle D E F$. Easy angle chase shows $\angle F D E=45^{\circ}$, and hence we have $D H=E F$ (both being equal to $\frac{\sqrt{2}}{2}$ times the radius of the incircle of $\triangle A B C)$. Also, as $D I A H$ is a parallelogram, $A H \perp B C$ and $D H \perp E F$ which give $A H P$ collinear. Our goal is to show $D K H P$ cyclic, because then diameters of the circles in question would be $D H$ and $E F$ respectively (latter because $H P \perp D P$), which we showed are equal.

3 points.

The main claim is the following: $I S \perp A D$ (This holds regardless of the right angle). One can prove it either via complex numbers (setting $(D E F)$ as the unit circle) or by showing that $A D$ is a polar of S with respect to the incircle of $\triangle A B C$. We will omit the proofs because the lemma is well-known.
Also, $A M P S$ is cyclic because of the right angles at M, P

2 points.

Now we have:

$$
\angle H P K=\angle A P M=\angle A S M=\angle I S M,
$$

where the second equality follows from the $A M P S$ being cyclic, the third equality follows from $A E I F$ being a square, i.e. I is the reflection of A across $E F$.

2 points.
Using the lemma we have:

$$
\angle I S M=\angle D A M=\angle K A M=\angle H D K,
$$

where the first equality holds because $I S \perp A D$ and $S M \perp A M$, and the last equality follows from $D H \| A M$.
2 points.
These 2 chains of equality show $\angle H P K=\angle H D K$, which exactly means $H P D K$ is cyclic, and we conclude from the first paragraph.

1 point.

Second Solution. Let I be the circumcircle of $D E F$, notice that $A E F I$ is a square. Let $B C, E F$ meet at S. It is clear that $A M K S$ is cyclic. Also A lies on the D-symmedian so since $I S \perp A D$, if $I S, A D$ intersect at X, this point lies on the circumcircles of $I E F, A M K$.

3 points.
Let circles of $D K L, A M K$ intersect at Y, it follows that $\angle D L K=\angle D Y K$. But, $\angle D L K=\angle K T D+\angle M S A=$ $90^{\circ}-\angle S D A+\angle M S A=\angle D S M=\angle M Y K$. It follows that Y is on $D M$.

2 points.
Now, we shall show that the feet of E and F on $D F$ and $D E$, respectively lie on the circle of $D K L$. By the theorem of radical axis, if circles $F M Y, E A F$ meet at Z, then Z would be on $D F$. We also have $\angle E Z F=90^{\circ}$, since $\angle E A F=90^{\circ}$. Analogously, if the circles of $E M Y, E A F$ meet at W, we can generate a similar result. Thus, the circles of $D K L, D Z W$ would be the same, i.e., identical. If H is the orthocenter of $D E F$, we have $R_{D K L}=R_{D Z W}=\frac{D H}{2}=\frac{I A}{2}=R_{A E F}$, as desired.

5 points.
Notes on marking:

- Citing the lemma as well-known won't cause point loss.
- In all incomplete computational solutions, only the geometric facts derived from the calculations will be worth points.

Problem 3. Let n be a positive integer. Let B_{n} be the set of all binary strings of length n. For a binary string $s_{1} s_{2} \ldots s_{n}$, we define its twist in the following way. First, we count how many blocks of consecutive digits it has. Denote this number by b. Then, we replace s_{b} with $1-s_{b}$. A string a is said to be a descendant of b if a can be obtained from b through a finite number of twists. A subset of B_{n} is called divided if no two of its members have a common descendant. Find the largest possible cardinality of a divided subset of B_{n}.
(Viktor Simjanoski)

Solution. For a string s, denote its twist by $f(s)$, and the number of blocks of consecutive digits it has by $b(s)$. Construct an undirected graph G on B_{n} with edges $(s, f(s))$ for all $s \in B_{n}$, and note that the largest possible cardinality of a divided subset of B_{n} is the number of connected components of the graph.
Each connected component of G contains exactly one cycle, and we aim to show that each cycle in the graph has a length of exactly 2 .

1 point.
Assume that there exists a cycle $A \subseteq B_{n}$ which is not of length 2. First, fix some $s \in A$.
We wish to show that $1<b(s)<n$. If we have $b(s)=1$, then s is either the string with all ones or the string with all zeroes, and we can easily see that $f(s)=f^{3}(s)$ and $s \neq f(f(s))$, which contradicts $s \in A$. Similarly, if $b(s)=n$ then s is one of the two alternating strings and we arrive to the same conclusion.

1 point.
Now consider $x=s_{b(s)-1}, y=s_{b(s)}, z=s_{b(s)+1}$. A twist replaces y with $1-y$, and depending on x, z changes $b(s)$ in the following ways:

- if $x=z \neq y$, we have $b(f(s))=b(s)-2$.
- if $x=y=z$, we have $b(f(s))=b(s)+2$.
- if $x \neq y=z$ or $x=y \neq z$, we have $b(f(s))=b(s)$ and moreover we see that $f(f(s))=s$ and the connected component of s has a cycle of length 2 so $s \notin A$.

We therefore see that if $s \in A$, we have $b(f(s))=b(s) \pm 2$.
1 point.
Now, consider some $s \in A$. We then have $f^{k}(s)=s$ for some $k \in \mathbb{N}$. Take s such that $b(s) \geqslant b\left(f^{m}(s)\right)$ for any $1 \leqslant m<k$, i.e. the element of the cycle with the largest number of blocks.

We have $b(f(s))=b(s)-2=b\left(f^{-1}(s)\right)$ by maximality and the previous proof. Notice that the application of f only changes the positions in s which are of the same parity as $b(s)$. We can see (as $b(s)=b\left(f^{-1}(s)\right)+2$ that $s_{b(s)-3}=$ $s_{b(s)-1} \neq s_{b(s)-2}$ and by similar reasoning $s_{b(s)-1}=s_{b(s)+1} \neq s_{b(s)}$.

1 point.
Now, consider the least $t>0$ such that $b\left(f^{t}(s)\right)=b(s)$. By minimality of t, it follows that $f^{t}(s)_{b(s)}=1-s_{b(s)}$ but as we have $s_{b(s)+1}=1-s_{b(s)}=s_{b(s)-1}$ we obtain that $b\left(f\left(f^{t}(s)\right)\right)=b(s)+2$ which contradicts the maximality of $b(s)$ in A, so no such component A can exist.

4 points.
Now, let us count the possible cycles of length 2. Each cycle of length 2 occurs when we have $f(f(s))=s$ and $b(s)=$ $b(f(s))$, which gives $2 \leqslant b(s) \leqslant n-1$.
We count by fixing either the left or right of the position $b(s)=k$ in a string s as one of $k-1$ "break" points between $0 / 1$ blocks in the string s and then counting that the other $k-2$ block "breakpoints" can be assigned in $\binom{n-3}{k-2}$ ways to the remaining $n-3$ spots between two symbols of s, with each assignment of blocks giving two distinct outcomes due to the choice of $0 / 1$ in the starting block. This gives a total of

$$
\sum_{k=2}^{n-1} 2\binom{n-3}{k-2}=2^{n-2}
$$

different cycles of length 2 and we are done.

Problem 4. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that for all positive integers x and y, the number $f(x)+y$ is a perfect square if and only if $x+f(y)$ is a perfect square. Prove that f is injective.
Remark. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is injective if for all pairs (x, y) of distinct positive integers, $f(x) \neq f(y)$ holds.
(Ivan Novak)

Solution. Suppose for the sake of contradiction that there exist positive integers a, b and c such that $f(a)=f(b)=c$ and $a>b$. Consider any $x>\sqrt{c}$.
Then, since $x^{2}-c+c=x^{2}-c+f(a)=x^{2}-c+f(b)$ is a square, both $f\left(x^{2}-c\right)+a$ and $f\left(x^{2}-c\right)+b$ are squares. Since $a-b>0$, we have the following bound:

$$
a-b=\left(f\left(x^{2}-c\right)+a\right)-\left(f\left(x^{2}-c\right)+b\right)>\sqrt{f\left(x^{2}-c\right)+a}+\sqrt{f\left(x^{2}-c\right)+b}
$$

This implies that the function $x \mapsto f\left(x^{2}-c\right)$ obtains only finitely many values since otherwise the bound wouldn't hold. By the pigeonhole principle, the expression $f\left(x^{2}-c\right)$ obtains some fixed value m for infinitely many positive integers x.

1 point.
Consider a positive integer $y>\sqrt{m}$. Then $y^{2}-m+f\left(x^{2}-c\right)=y^{2}$ for infinitely many values of x. This implies that $f\left(y^{2}-m\right)+x^{2}-c$ is a square for infinitely many values of x. This implies $f\left(y^{2}-m\right)-c=0$, since it can be written as a difference of squares in infinitely many ways. Thus, $f\left(y^{2}-m\right)=c$ for every $y>\sqrt{m}$.

1 point.
Now, $f\left(y^{2}-m\right)=c$ for infinitely many y, so with the same argumentation as above we get $f\left(x^{2}-c\right)=m$ for every $x>\sqrt{c}$.
Lemma. There exists a positive integer M such that for every positive integer z we have $f(z) \leqslant M$ or $f(z) \equiv m+2$ $(\bmod 4)$
Proof. If $z=x^{2}-c$ for some positive integer x then we have $f(z)=m$.
Now assume $z \neq x^{2}-c$ for all positive integers x.
Let $y \in \mathbb{N}, y>\sqrt{m}$. If $f(z)+y^{2}-m$ is a square, then $z+f\left(y^{2}-m\right)$ is a square, but $f\left(y^{2}-m\right)=c$, so this is contradiction with the choice of z.
So $f(z)+y^{2}-m \neq x^{2}$ for all positive integers x.
From this, we have $f(z) \neq x^{2}-y^{2}+m$ for all positive integers x i y such that $y>\sqrt{m}$.
Let y_{1} be the smallest positive integer such that $y_{1}>\sqrt{m}$.
For every $y \geqslant y_{1}$ we have $f(z) \neq(y+1)^{2}-y^{2}+m=2 y+1+m$, so $f(z)$ is either smaller than $2 y_{1}+1+m$ or $f(z)-m \not \equiv 1$ $(\bmod 2)$.
For every $y \geqslant y_{1}$ we have $f(z) \neq(y+2)^{2}-y^{2}+m=4 y+4+m$, so $f(z)$ is either smaller than $4 y_{1}+4+m$ or $f(z)-m \not \equiv 0$ $(\bmod 4)$.
Now $M=4 y_{1}+4+m$ satisfies the claim of the lemma.

5 points.
Take M which satisfies the lemma. Now take w such that $w+1, w+2, \ldots, w+M$ are not squares, and $w+m \equiv 0(\bmod 4)$. For some $d>\sqrt{f(w)}$
we have $d^{2}-f(w)+f(w)$ is a square so $f\left(d^{2}-f(w)\right)+w$ must be a square, but using the lemma on $z=d^{2}-f(w)$ we get that $f\left(d^{2}-f(w)\right)+w$ is either among $w+1, w+2, \ldots, w+M$ or congruent $2+m+w \equiv 2$ modulo 4 , so it cannot be a square.
Contradiction with the starting assumption, so f must be injective.

