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Problems and Solutions

Problem 1. Let ABC be an acute-angled triangle. Let D and E be the midpoints of sides AB and AC
respectively. Let F be the point such that D is the midpoint of EF . Let Γ be the circumcircle of triangle FDB.
Let G be a point on the segment CD such that the midpoint of BG lies on Γ. Let H be the second intersection
of Γ and FC. Show that the quadrilateral BHGC is cyclic.

(Art Waeterschoot, Belgium)

Sketch for the First Solution.
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First Solution. Since D and E are midpoints, the diagonals AB and EF of the quadrilateral AFBE bisect each other,
so AFBE is a parallelogram. Hence BF ‖ AE.

2 points.

Lemma. If I is the second intersection of Γ and BG, then FI ‖ CD. (We will present two different proofs.)
First proof. Let J be the point such that BCAJ is a
parallelogram. Since BF ‖ AE, we have that B, F , J are
colinear.

2 points.

Since D is the midpoint of AB, C, D, J are collinear.

1 point.

As F and I are midpoints of BJ and BG, then FI ‖ CD.

2 points.
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Second proof. Let M be the midpoint of BC. As

|MC| = |BC|
2

= |DE| = |DF |

and FD ‖MC, then MCDF is a parallelog., so MF ‖ CD.

2 points.

As M and I are midpoints of BC and BG, then MI ‖ CD.

2 points.

Hence M , I and F are collinear and FI ‖ CD.

1 point.
Now as we know that FI ‖ CD, we have ∠BIF = ∠BGD.

1 point.

As BIHF is a cyclic quadrilateral, we have ∠BIF = ∠BHF .

1 point.

Hence
∠CHB = 180◦ − ∠BHF = 180◦ − ∠BGD = ∠CGB,

so BHGC is cyclic as desired.
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1 point.

Sketch for the Second Solution.
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Second Solution. Since D and E are midpoints, the diagonals AB and EF of the quadrilateral AFBE bisect each
other, so AFBE is a parallelogram. Hence BF ‖ AE.

2 points.

Let J be the point such that BCAJ is a parallelogram. Since BF ‖ AE, we have that B, F , J are collinear.

2 points.

Since D is the midpoint of AB, C, D, J are collinear.

1 point.

Now let Γ1 be the circumcircle of triangle JAB. As F and D are midpoints of BJ and BA, and the midpoint of BG
lies on Γ, we can redefine G as the second intersection of Γ1 and CJ .

2 points.

As AJBG is a cyclic quadrilateral, we have ∠BGJ = ∠BAJ .

1 point.

As FD is parallel to JA, we have ∠BAJ = ∠BDF .

0 points.

As BHDF is a cyclic quadrilateral, we have ∠BDF = ∠BHF .

1 point.

Hence
∠CHB = 180◦ − ∠BHF = 180◦ − ∠BGD = ∠CGB,

so BHGC is cyclic as desired.

1 point.

Notes on marking:

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a complete solution can be awarded.
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Problem 2. A positive integer k > 3 is called fibby if there exists a positive integer n and positive integers
d1 < d2 < . . . < dk with the following properties:

• dj+2 = dj+1 + dj for every j satisfying 1 6 j 6 k − 2,

• d1, d2, . . . , dk are divisors of n,

• any other divisor of n is either less than d1 or greater than dk.

Find all fibby numbers.

(Ivan Novak)

Solution. Note that (1, 2, 3, 5) is a sequence of length 4 such that all its elements are divisors of 30 and every other
divisor of 30 is either less than 1 or greater than 5. Also 3 = 1 + 2 and 5 = 2 + 3, which means 4 is fibby. Consequently,
3 is also fibby.

1 point.

Suppose there exist positive integers n, d1 < d2 < . . . < dk satisfying the problem’s conditions, with k > 5.
Suppose for the sake of contradiction that dj is even for some j > 3. Then dj

2
is also a divisor of n.

1 point.

However,

d1 6 dj−2 <
dj−1 + dj−2

2
=

dj
2

< dj−1 < dk.

This implies dj
2

is a divisor of n which is neither less than d1 nor greater than dk and is distinct from the numbers
d1, d2, . . . , dk, which is a contradiction.

6 points.

This implies that d3 and d4 are odd. However, this means that d5 = d3 + d4 is even, which is a contradiction. Therefore,
any number greater than 4 is not fibby.

2 points.

Notes on marking:

• The part of the proof where we prove all k ≥ 5 are not fibby is worth 9 points. It may happen that a contestant
proves a weaker statement in that direction.

– If a contestant proves that there exists C such that no k ≥ C is fibby, they should get 1 point.
– If the C above is explicit, they should get an additional 1 point.
– If in addition C = 6, they should get 1 point more.

The points above (at most 3 points) are not additive with the points for proving C = 5 in the official solution.
Thus, without using ideas that can solve the C = 5 case, the contestant should not get more than 1 point for the
construction, plus the points above if applicable.

• Many solutions proceed by cases on the parity of d1 and d2. However, in all solutions that the Problem Selection
Committee were aware of, the only parity that matters is the parity of some dj , j ≥ 3.
Thus, stating and proving that some of d3, d4 and d5 is even is worth 2 points, as in the official solution, and no
other points are awarded for parity concerns.
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Problem 3. Two types of tiles, depicted on the figure below, are given.

Tile F: Tile Z:

Find all positive integers n such that an n× n board consisting of n2 unit squares can be covered without gaps
with these two types of tiles (rotations and reflections are allowed) so that no two tiles overlap and no part of
any tile covers an area outside the n× n board.

(Art Waeterschoot)

Solution. We claim such a tiling exists whenever n is divisible by 4 and greater than 4.

0 points.

We now prove the existence of a tiling in the case where n is divisible by 4 and greater than 4. The figure below shows
that if k ≥ 1, we can tile a (2k + 1)× 4-rectangle.

. . .

. . .

1 point.

By gluing a 3× 4 rectangle to the above tiling, we get a tiling of any (4k + 4)× 4 rectangle, where k > 1. We can now
stack k + 1 such rectangles next to each other to obtain a (4k + 4)× (4k + 4) square, which proves the claim.

1 point.

Suppose we can tile a n × n square with the given tiles. Let a and b be the number of F -tiles and Z-tiles used in the
tiling, respectively. Then 6a + 4b = n2, which implies n is even. This implies that a is also even. Let n = 2k, where k is
a positive integer.

0 points.

Consider the following colouring of the square: divide up the square into k2 smaller squares of size 2×2 and colour these
squares with a chessboard colouring (see the figure below). Every F -tile covers exactly 3 black unit squares and every
Z-tile covers an odd number of black unit squares.

1 point.

Because there are an even number of black squares, we obtain that a and b have equal parity. Since a is even, this implies
that b is even.

3 points.
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Now colour all unit squares in an even row and odd column black (see the figure below). Now every F -tile covers an
even number of black unit squares and every Z-tile covers exactly one black unit square.

1 point.

Since the number of black squares is k2, we obtain that b and k2 have equal parity. Since b is even, this implies k is even.

3 points.

Therefore, n is a multiple of 4.

0 points.

Furthermore, it is easily seen a 4 × 4-square cannot be tiled, as there are no positive integers (a, b) such that b is even
and 6a + 4b = 16.

0 points.

Notes on marking:

• Colouring a square in a certain way without drawing any relevant conclusions from the colouring is worth 0 points.

• Another possible solution is to consider a colouring with 4 colours by dividing up into small 2× 2-squares. In fact
this is equivalent to our solution, because is the same as considering both colourings above at once. Considering
such a colouring and drawing the same conclusions is worth the same amount of points as considering the colourings
one by one.

• If a student doesn’t check the case when n = 4, they can score at most 9 points on the problem.

• The standard chessboard colouring gives only that a is even, which is considered trivial by the Jury, thus it is worth
0 points.

• If a student has another colouring which proves that 2|b, this is worth 4 points, as in the official solution.

• If a student has another colouring which proves that 4|a, this is worth 4 points, as in the official solution.
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Problem 4. Let a, b, c be positive real numbers such that ab+bc+ac = a+b+c. Prove the following inequality:√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b
6
√

2 ·min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
.

(Dorlir Ahmeti)

First Solution. We can rewrite the inequality as

∑
cyc

2

√
2

(
a +

b

c

)
6 4 ·min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
and distinguish two cases based on what the right hand side is.

Case 1. min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
=

a

b
+

b

c
+

c

a
.

Using AM-GM inequality, we have

∑
cyc

2

√
2

(
a +

b

c

)
6
∑
cyc

(
2 + a +

b

c

)
= 6 + a + b + c +

a

b
+

b

c
+

c

a
.

2 points.

Hence, it is enough to prove

6 + a + b + c +
a

b
+

b

c
+

c

a
6 4

(
a

b
+

b

c
+

c

a

)
⇐⇒ 6 + a + b + c 6 3

(
a

b
+

b

c
+

c

a

)
. (1)

Applying AM-GM inequality we obtain

2

(
a

b
+

b

c
+

c

a

)
> 2 · 3 3

√
a

b
· b
c
· c
a

= 6 (2)

and using Cauchy-Schwarz inequality together with the condition allows us to conclude:

(ab + bc + ac)

(
a

b
+

b

c
+

c

a

)
> (a + b + c)2 = (a + b + c)(ab + bc + ac)

=⇒ a

b
+

b

c
+

c

a
> a + b + c. (3)

2 points.

Combining results (2) and (3) yields (1).

Case 2. min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
=

b

a
+

c

b
+

a

c
.

Using AM-GM inequality, we have

∑
cyc

2

√
2

(
a +

b

c

)
=
∑
cyc

2

√
2a

c

(
c +

b

a

)
6
∑
cyc

(
2a

c
+ c +

b

a

)
= a + b + c + 3

(
b

a
+

c

b
+

a

c

)
.

4 points.

Hence, it is enough to prove

a + b + c + 3

(
b

a
+

c

b
+

a

c

)
6 4

(
b

a
+

c

b
+

a

c

)
⇐⇒ a + b + c 6

b

a
+

c

b
+

a

c
.

Using Cauchy-Schwarz inequality together with the condition allows us to conclude

(ab + bc + ac)

(
b

a
+

c

b
+

a

c

)
> (a + b + c)2 = (a + b + c)(ab + bc + ac)

=⇒ b

a
+

c

b
+

a

c
> a + b + c

2 points.

which is exactly what we wanted to prove.
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Second Solution. Using the substitution m = min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
, we can rewrite the inequality as

1

3

(√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b

)
6

m
√

2

3
.

Recognizing the left hand side as an arithmetic mean, we may apply the QM-AM inequality to obtain

1

3

(√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b

)
6

√
a + b

c
+ b + c

a
+ c + a

b

3
.

We’re now left with proving
a + b

c
+ b + c

a
+ c + a

b

3
6

(
m
√

2

3

)2

which can be written as:
3

2

(
a + b + c

)
+

3

2

(
a

b
+

b

c
+

c

a

)
6 m2. (1)

1 point.

We distinguish two cases based on the value of m:

Case 1. m =
b

a
+

c

b
+

a

c
.

Expanding the right hand side of (1) and cancelling out
3

2

(
a

b
+

b

c
+

c

a

)
turns the inequality into

3

2

(
a + b + c

)
6

b2

a2
+

c2

b2
+

a2

c2
+

1

2

(
a

b
+

b

c
+

c

a

)
.

Multiplying both sides by 2(ab + bc + ac) and making use of the given condition on the left hand side gives us:

3(a + b + c)2 6 2

(
b2

a2
+

c2

b2
+

a2

c2

)
(ab + bc + ac) +

(
a

b
+

b

c
+

c

a

)
(ab + bc + ac).

We may now apply Cauchy-Schwarz inequality to obtain
(
a

b
+

b

c
+

c

a

)
(ab + bc + ac) > (a + b + c)2

2 points.

and this leaves us with proving the following:

(a + b + c)2 6

(
b2

a2
+

c2

b2
+

a2

c2

)
(ab + bc + ac). (2)

We now make use of a well known lemma:

Lemma 1. For positive real numbers x, y, z one has
x

y
+

y

z
+

z

x
>

x + y + z
3
√
xyz

.

Proof. Applying AM-GM inequality we obtain:

x

y
+

x

y
+

y

z
> 3 3

√
x2y

y2z
=

3x
3
√
xyz

,

y

z
+

y

z
+

z

x
> 3

3

√
y2z

z2x
=

3y
3
√
xyz

,

z

x
+

z

x
+

x

y
> 3 3

√
z2x

x2y
=

3z
3
√
xyz

.

Summing up the above three inequalities finishes the proof of the lemma.

3 points.

Applying the lemma we obtain
b2

a2
+
c2

b2
+
a2

c2
>

a2 + b2 + c2

3
√
a2b2c2

and applying AM-GM we obtain ab+bc+ac > 3
3
√
a2b2c2,

which together used in (2) mean that we only need to prove

(a + b + c)2 6 3(a2 + b2 + c2)

and this is equivalent to (a− b)2 + (b− c)2 + (a− c)2 > 0.

1 point.
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Case 2. m =
a

b
+

b

c
+

c

a
.

Expanding the right hand side of (1) turns the inequality into

3

2

(
a + b + c

)
+

3

2

(
a

b
+

b

c
+

c

a

)
6

a2

b2
+

b2

c2
+

c2

a2
+ 2

(
b

a
+

c

b
+

a

c

)
. (3)

Since m =
a

b
+

b

c
+

c

a
, we have that

3

2

(
a

b
+

b

c
+

c

a

)
6

3

2

(
b

a
+

c

b
+

a

c

)
and using this in (3), we’re left with

proving:
3

2

(
a + b + c

)
6

a2

b2
+

b2

c2
+

c2

a2
+

1

2

(
b

a
+

c

b
+

a

c

)
.

1 point.

The rest of the proof is now analogous to the steps we used to solve the first case, namely multiplying both
sides by 2(ab + bc + ac) and making use of the given condition, applying Cauchy-Schwarz inequality to prove(
b

a
+

c

b
+

a

c

)
(ab+ bc+ac) > (a+ b+ c)2, making use of the lemma to prove

a2

b2
+

b2

c2
+

c2

a2
>

a2 + b2 + c2

3
√
a2b2c2

, making

use of AM-GM inequality to obtain ab + bc + ac > 3
3
√
a2b2c2 and finally proving (a + b + c)2 6 3(a2 + b2 + c2).

2 points.
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Third Solution. Let m = min

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
and n = max

{
a

b
+

b

c
+

c

a
,
b

a
+

c

b
+

a

c

}
.

0 points.

Using Cauchy-Schwarz inequality, we obtain the following:

√
a +

b

c
+

√
b +

c

a
+

√
c +

a

b
=

√√√√(√ac + b

c
+

√
ab + c

a
+

√
bc + a

b

)2

6

√
(ac + b + ab + c + bc + a)

(
1

c
+

1

a
+

1

b

)
2 points.

Now by using ab + bc + ac = a + b + c, we get:√
(ac + b + ab + c + bc + a)

(
1

c
+

1

a
+

1

b

)
=

√
2 (a + b + c)

(
1

a
+

1

b
+

1

c

)
.

Therefore, we want to show √
(a + b + c)

(
1

a
+

1

b
+

1

c

)
6 m. (1)

0 points.

We proceed by proving
m2 > 3 + 2n. (2)

Proof. Using AM-GM inequality, we get the following:

b2

a2
+

c2

b2
+

a2

c2
> 3.

Applying this result, we see that(
b

a
+

c

b
+

a

c

)2

=
b2

a2
+

c2

b2
+

a2

c2
+ 2

(
a

b
+

b

c
+

c

a

)
> 3 + 2

(
a

b
+

b

c
+

c

a

)
.

Analogously, we also get that
(
a

b
+

b

c
+

c

a

)2

> 3 + 2

(
b

a
+

c

b
+

a

c

)
, which proves (2).

2 points.

Now m 6 n along with (2) yields√
(a + b + c)

(
1

a
+

1

b
+

1

c

)
=

√
3 +

(
a

b
+

b

c
+

c

a

)
+

(
b

a
+

c

b
+

a

c

)
=
√

3 + m + n

6
√

3 + 2n

6
√
m2 = m

which is exactly (1).

6 points.

Notes on marking:

• In the third solution, considering only one case for m 6= n and completing the proof is worth 8 points. Full points
are awarded if the analogy to the other case is mentioned.

• Proving
a

b
+

b

c
+

c

a
> 3 should not be awarded any points as this claim is considered trivial.

• In the first solution, proving
a

b
+

b

c
+

c

a
> a + b + c (or the analogous version) and not applying this inequality in

both cases such that the application leads to the solution should only be awarded 2 points.
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