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Problems and Solutions

Problem 1. For positive integers a and b, let M(a,b) denote their greatest common divisor. Determine all
pairs of positive integers (m,n) such that for any two positive integers z and y such that z | m and y | n,

M(z +y,mn) > 1.

(Ivan Novak)

First Solution. We will prove that there are no solutions. Let m and n be any positive integers.
Let P denote the product of all primes which divide n and don’t divide m. Then m is a divisor of m and P is a
divisor of n, but we’ll prove that m + P and mn are relatively prime.

4 points.

Let p be any prime divisor of mn.
If p divides m, then p doesn’t divide P and therefore p doesn’t divide m + P.

3 points.

If p doesn’t divide m, then p divides n, and then p divides P by definition of P, which implies that p doesn’t divide
m + P.

3 points.

Hence, m + P and mn have no common prime factors, which implies they are relatively prime. Hence, there are no
solutions.



Second Solution. We will prove that there are no solutions. Assume for the sake of contradiction that (m,n) was a
solution. We will recursively construct an infinite unbounded sequence of pairs of positive integers (x, yx)ren such that
i | m, yi | noand M(zk, yi) = 1.

1 point.
Then either (zx)ren or (yr)ren will be unbounded, but z, < m and yi, < n for all k € N, which will yield a contradiction.
1 point.

Let (z1,y1) = (1,1). Let k € N. Suppose we have constructed (zr, yx) satisfying all of the above conditions. Then since
(m,n) is a solution, there exists a prime divisor p of both mn and zx + yx.

1 point.
If p divides m, then let (zx+1, yr+1) = (P2, Yx)-
2 points.
If p divides n and doesn’t divide m, let (xr41, Yut1) = (Tk, PYx)-
2 points.
In both cases xy11 divides m and yi41 divides n.
1 point.

Also, M (Zk+1,yr+1) = 1 because p does not divide neither zx nor yr (as zx and yi are relatively prime and p divides
zr + yi). Hence, the construction is valid.

2 points.
Notes on marking:
e In the First solution, there are different choices for pairs of divisors whose sum is relatively prime with mn. For

rad(mn)

rad(m)
finds such a pair and claims that it is a solution without proving that their sum is relatively prime with mn, and
if the proof is as straightforward as in the official solution, he should still get 4 points from the first part of the

solution.

example, one can take (rad(m), ), where rad(z) denotes the product of all prime divisors of z. If a student



Problem 2. Let n be a positive integer. An nxn board consisting of n? cells, each being a unit square coloured
either black or white, is called convez if for every black coloured cell, both the cell directly to the left of it and
the cell directly above it are also coloured black. We define the beauty of a board as the number of pairs of its
cells (u, v) such that u is black, v is white and u and v are in the same row or column. Determine the maximum
possible beauty of a convex n x n board.

(Ivan Novak)

First Solution. We colour the board so that in the i-th row, the leftmost n + 1 — i cells are black. We’ll call this board
the Unicorn.

1 point.
The beauty of this board equals
n—1 n—1 n—1 2 3
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1 point.

We'll call any pair (u,v) such that w is white, v is black and u and v are in the same row or column a pretty pair. Now
we will prove that the beauty of every convex board is less than or equal to the beauty of the Unicorn. We will do this
by performing an algorithm which turns an arbitrary board into the Unicorn in finitely many steps.

Consider an arbitrary convex board. Let a; be the number of black coloured cells in the i-th row. We perform the
following algorithm:

If the board is equal to the Unicorn, we are done. Otherwise, find the first row in which a; # n + 1 —i. Then,
we consider two cases:

1. a; <n+1—14. We colour the a; + 1-th cell in the i-th row black.
1 point.

We claim that the beauty of the board didn’t decrease.

We now count the number of black/white cells which are in the same row or column as the cell we colored and
which are distinct from it.

The number of black cells in the same row is equal to a;, and the number of black cells in the same column is ¢ — 1.
On the other hand, the number of white cells in the same row is n — 1 — a; and the number of white cells in the
same column is n — 1.

1 point.

Therefore, the difference of beauties of the board before and after coloring the a; + 1-th cell of i-th row black is
ai+(i—1)—(n—1—a;) — (n—14) = 2(a; + i —n) < 0, which implies that the new board’s beauty is not smaller.

1 point.
2. a; >n+1—1. Let j > i be the biggest index such that a; = a;. We colour the a;-th cell of the j-th column white.
1 point.

We claim that the beauty of the board didn’t decrease.

As in the first case, we count the number of black/white cells which are in the same row or column as the cell we
colored and which are distinct from it.

The number of white cells in the same row equals n — a;, and the number of white cells in the same column equals
n — 7. On the other hand, the number of black cells in the same row equals a; — 1, and the number of black cells
in the same column equals j — 1.

1 point.

Therefore, the difference of beauties of the board before and after coloring the aj-th cell of j-th row white is
n—aj)+(n—37)—(a;—1)—(—-1)=2(n+1—-j7—a;) <2(n+1—1i—a;) <0, which implies that the new
board’s beauty is bigger.

1 point.

The algorithm terminates because after each step, the number of positions where the board differs from the Unicorn
decreases by 1. Therefore, the maximum beauty is achieved for the Unicorn.

141 points.



Second Solution. Consider an arbitrary convex board. Let a; denote the number of black cells in the i-th row.
Furthermore, we define ap = n and a,+1 = 0. Then the number of pretty pairs (u,v) such that v and v are in the same

row equals
n

Zai(n — ai).

i=1
1 point.

The number of columns with at least ¢ black cells equals a;.
1 point.

This implies that the number of columns with exactly i black cells equals the difference between the number of columns
with at least ¢ black cells and the number of columns with at least ¢ + 1 black cells. Therefore, the number of columns
with exactly ¢ black cells equals a; — aj+1.

2 points.
This implies that the number of pretty pairs (u,v) such that v and v are in the same column equals
> (@i — ai1)i(n — ).
i=1
1 point.

Therefore, the beauty of the board equals

n

Zai(n —a;)+ (a; — aiy1)i(n — 1) = Zai(n —ai+in—1)—(GE—1)(n+1-19)) = Zai@n—i— 1—2i—a).

i=1
1 point.

For a fixed i € {1,...,n}, a;(2n+ 1 — 2i — a;) is a quadratic function of a;, which is increasing for a; € [0,n —i+ %] and
decreasing for a; € [n — i+ 1,n], and the maximum among all integer a; is then achieved if a; € {n —i,n —i+1}.

1 point.
Therefore, the whole sum is maximised if a; € {n —i,n —i+ 1} for all < € {1,...,n}.
1 point.
Any board with a; € {n —i,n — i+ 1} is convex since then a; > a;41 for any of the possible choices.
1 point.
In this case, the sum equals
= . ) o 5, . nm+1)2n+1)=3nn+1) nP-n
;(n i) (n z+1)—;z(z 1)—21 1= 5 =5
1 point.

Notes on marking:

e A student is awarded the maximum of the two scores he gets by following either of the two marking schemes. Points
from different solutions are not additive.

e If the student produces an optimal board, writes down its beauty, but does not simplify the expression to a closed
form, then:
a) if the student does not prove the optimality of the board (a “0+" solution), he is awarded 0 points for this part;
b) if the student proves the optimality of the board (a “10-” solution), he is awarded 1 point for this part.

e In the First Solution, the last 2 points are only awarded if he gives a correct algorithm.

e In the First Solution, if the student has a correct algorithm, but fails to prove that it terminates, he should be
deducted 1 point.

e In the Second Solution, the “other direction” is implicit in the last part of the solution. This is because the
Unicorn configuration is covered by the given equality cases. If the student gives an optimal board as in the other
solutions, and then shows that his optimal board is contained in the equality case, his solution is complete.
However, if the student does not in any way show that his lower and upper bounds match, he should be deducted
1 point.



Problem 3. In an acute triangle ABC with |AB| # |AC|, let I be the incenter and O the circumcenter. The
incircle is tangent to BC, CA and AB in D, E and F respectively. Prove that if the line parallel to EF passing
through I, the line parallel to AO passing through D and the altitude from A are concurrent, then the point of
concurrence is the orthocenter of the triangle ABC.

(Petar Nizié-Nikolac)
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Solution. Let H be that concurrence point. We shall prove that H is the orthocenter of the triangle ABC.
Firstly we observe that AFIE is a deltoid (because |AE| = |AF| and |IE| = |IF|),so Al L EF || HI.

1 point.
Using the fact that A[ is the bisector of ZOAH and AH || ID we conclude that
/DIH = /AID —90° = 180° — ZTAH —90° = 90° — 20AH =90° — AHQDI
so triangle I H D is an isoscales one.
1 point.

Denote by T' the second intersection of the line DI and the incircle and S as the point such that SH DI is a rhombus.
It follows that S lies on AH, but also that triangle ISH is an isoscales one, so

ZSTA =90° — ZSIH = 90° — ZSHI = 90° — ZHID = LAIT = LIAS.
Hence |AS| = |SI| = |[ID| = |IT| (we used that I is the midpoint of TD), so ASIT is a thombus.
3 points.
Lemma. A, T, O and D, are collinear, where D is the point where A-excircle is tangent to BC.
Proof. Firstly, A, T" and O are collinear as AT || SI || HD || AO.
1 point.

Secondly, A, T" and D; are collinear as there is homothety from A sending incircle to A-excircle, so the "highest" points
(w.r.t. BC) of these circles (T and D;) and the center of homothety (A) are collinear. Therefore, A, T', O and D; are
collinear. =

1 point.
Denote by M the midpoint of BC. We know that |BD| = W = |CD1), so M is the midpoint of DD;.
1 point.
As TDD; is a right triangle and ZOM Dy = 90° we conclude that OM is a D;-midline in the triangle TD D1, hence
2|0M| =|TD|=|TI|+ |ID| = |AS|+|SH| = |AH]|.
1 point.

Now we can conclude in various ways (for example, using the Euler line argument) that H is the orthocenter of the
triangle ABC.

1 point.



Notes on marking:

e [Essentially, 5 points are awarded for proving that AH DT is a parallelogram with longer side being twice the size
of the shorter side, next 4 points are awarded for proving that 2|OM| = |AH]| is true, and 1 point is awarded for
deduction that H is indeed an orthocenter.

e If a student states that A, T, D; are collinear in a general triangle without using it to prove the problem (for
example, by introducing the point O and stating that it should be on the line), it should be awarded 0 points. On
the other hand, if a student uses this fact to prove the problem, it does not have to prove this fact and it is enough
to state it. In that case it is awarded 1 point.

e If a student states that 2|OM| = |AH]| in a general triangle without using it to prove the problem (for example, by
noting that |OM/| = |ID|), it should be awarded 0 points. On the other hand, if a student uses this fact to prove
the problem, it does not have to prove this fact and it is enough to state it. In that case it is awarded 1 point.

e If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a compete solution can be awarded.



Problem 4. Find all functions f : R — R such that

f@) + fyf (@) + f(y) = [z +2f(y)) + 2y
for all x,y € R.
(Adrian Beker)

Solution. It is easily checked that f(z) = x4+ 1 is a valid solution. We will prove that it is the only solution. Let P(z,y)
denote the assertion

@)+ fyf(@) + fy) = f(z+2f(y)) +xy
and let a = f(0). We will first prove the following claim:

Claim. f is injective
Proof: Suppose that f(x) = f(y) =t for some z,y € R. We have:

P(z,z) = t+ f(at+1t) = f(x+2t) +2°

P(x,y) = t+ fyt+1t) = f(z+2t) + 2y
Subtracting the last two equations yields f(xt+t)— f(yt+t) = z(x—y). Similarily, we have f(yt+t)— f(zt+t) = y(y—x)

which implies (z —y)? =0 = z =y, hence f is injective. O
4 points.
We have:
P(z,0) = f(z)+ f(a) = f(z + 2a) (1)
Setting = —a yields f(—a) = 0. Now we have:
P(z,—a) = f(-af(z)) = —az (2)
Again, setting = —a yields a = a?, hence a € {0,1}.
1 point.
Case 1. a =0
P0,y) = f(f(y) = f(2f(¥))
Since f is injective, we have f(y) = 2f(y) = f(y) =0 for all y € R, which is clearly impossible.
1 point.
Case 2. a =1
Now (2) implies f(—f(z)) = —x for all z € R This means that f is bijective. On the other hand, (1) implies that
flx)+ f(1) = f(z+2) for all x € R.
P+2y) = fle+2)+fwfz+2)+f(y) = f@+2+2f(y) + (z +2)y
f@)+ fw) + fyf@)+ fy) +ufQ) = fl@+2f(y) + f(1) + 2y + 2y
1 point.
By subtracting the initial equation from this one, we obtain:
fyf@)+ fly) +yfQ) = flyf(@) + f(y) + 2y
If y # 0, we can choose x € R such that f(x) = f% because f is surjective, hence the last equation yields:
flyf(1)) =2y +1
2 points.

for all y # 0, but it is also true for y = 0. In particular, setting y = —% yields f(—%) = 0. Since f is injective and
f(=1) =0, it follows that f(1) =2 = f(2y) =2y + 1 for all y € R. Finally, we deduce that f(z) =x+1 for all x € R,
as desired. O
1 point.
Notes on marking:
e The case a = 1 can be finished without injectivity. If a student deduces that f is linear and checks that the only
option for f is f(z) = = + 1, he should get 1 point.
e If a student manages to prove that f is injective in the case a = 0, he should get 4 points from the first part of
the solution since in the case a = 1 the proof can be finished without injectivity.

e If a student doesn’t check that f(z) =z + 1 is indeed a solution or at least mention that it can be easily checked,
he should lose 1 point.



