

Problem 1. A partition of a positive integer is *even* if all its elements are even numbers. Similarly, a partition is *odd* if all its elements are odd. Determine all positive integers n such that the number of even partitions of n is equal to the number of odd partitions of n.

Remark: A partition of a positive integer n is a non-decreasing sequence of positive integers whose sum of elements equals n. For example, (2, 3, 4), (1, 2, 2, 2, 2) and (9) are partitions of 9.

(Ivan Novak)

Problem 2. Let ABC be a triangle with |AB| < |AC|. Let k be the circumcircle of $\triangle ABC$ and let O be the center of k. Point M is the midpoint of the arc \widehat{BC} of k not containing A. Let D be the second intersection of the perpendicular line from M to AB with k and E be the second intersection of the perpendicular line from M to AB with k and E be the second intersection of the perpendicular line from M to AC with k. Points X and Y are the intersections of CD and BE with OM respectively. Denote by k_b and k_c circumcircles of triangles BDX and CEY respectively. Let G and H be the second intersections of k_b and k_c with AB and AC respectively. Denote by k_a the circumcircle of triangle AGH.

Prove that O is the circumcenter of $\triangle O_a O_b O_c$, where O_a , O_b , O_c are the centers of k_a , k_b , k_c respectively.

(Petar Nizić-Nikolac)

Problem 3. For which real numbers k > 1 does there exist a bounded set of positive real numbers S with at least 3 elements such that

$$k(a-b) \in S$$

for all $a, b \in S$ with a > b?

Remark: A set of positive real numbers S is *bounded* if there exists a positive real number M such that x < M for all $x \in S$.

(Petar Nizić-Nikolac)

Problem 4. Let x, y, m, n be integers greater than 1 such that

$$\underbrace{x^{x^{x^{\cdots}}}}_{m \text{ times}} = \underbrace{y^{y^{y^{\cdots}}}}_{n \text{ times}}.$$

Does it follow that m = n?

Remark: This is a tetration operation, so we can also write ${}^{m}x = {}^{n}y$ for the initial condition.

(Petar Nizić-Nikolac)