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Problems and solutions

Problem 1. Let ABC be a triangle and Q a point on the internal angle bisector of ∠BAC. Circle ω1 is
circumscribed to triangle BAQ and intersects the segment AC in point P 6= C. Circle ω2 is circumscribed to
the triangle CQP . Radius of the cirlce ω1 is larger than the radius of ω2. Circle centered at Q with radius QA
intersects the circle ω1 in points A and A1. Circle centered at Q with radius QC intersects ω1 in points C1 and
C2. Prove ∠A1BC1 = ∠C2PA.

(Matija Bucić)

Solution. From the conditions in the problem we have |QC1| = |QC2| and |QA| = |QA1|. Also as Q lies on the internal
angle bisector of∠CAB we have ∠PAQ = ∠QAB =⇒ |QP | = |QB|.
Now noting from this that pairs of points A and A1, C1 and C2, B and P are symmetric in line QS1, where S1 is the
center of ω1. We can directly conclude ∠A1BC1 = ∠APC2 as these is the image of the angle in symmetry.
This way we have avoided checking many cases but there are many ways to prove this problem.

Problem 2. Let S be the set of positive integers. For any a and b in the set we have GCD(a, b) > 1. For any
a, b and c in the set we have GCD(a, b, c) = 1. Is it possible that S has 2012 elements?

GCD(x, y) and GCD(x, y, z) stand for the greatest common divisor of the numbers x and y and numbers x, y
and z respectively.

(Ognjen Stipetić)

Solution. There is such a set.
We will construct it in the following way: Let a1, a2, . . . a2012 equal to 1 in the begining. Then we take 2012·2011

2
different

prime numbers, and assign a different prime to every pair ai, aj (where i 6= j) and multiply them with this assigned
number. (I.e. for the set of 4 elements we can take 2, 3, 5, 7, 11, 13, so S would be {2 · 3 · 5, 2 · 7 · 11, 3 · 7 · 13, 5 · 11 · 13}.
The construction works as we have multiplied any pair of numbers with some prime so the condition gcd(a, b) > 1 is
satisfied for all a, b. As well as each prime divides exactly 2 primes so no three numbers a, b, c can have gcd(a, b, c) > 1.

Problem 3. Do there exist positive real numbers x, y and z such that

x4 + y4 + z4 = 13,

x3y3z + y3z3x+ z3x3y = 6
√
3,

x3yz + y3zx+ z3xy = 5
√
3?

(Matko Ljulj)

Solution. Let’s assume that such x, y, z exist. Let a = x2, b = y2, c = z2. As well, let A = a+ b+ c, B = ab+ bc+ ca,
C = abc. The upper system can be rewritten as:

a2 + b2 + c2 = 13 =⇒ (a+ b+ c)2 − 2(ab+ bc+ ca) = 13 =⇒ A2 − 2B = 13

xyz(x2y2 + y2z2 + z2x2) = 6
√
3 =⇒

√
CB = 6

√
3

xyz(x2 + y2 + z2) = 5
√
3 =⇒

√
CA = 5

√
3.
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We can note that a, b and c are positive reals (They are not negaitve from the definition; and as
√
CB = 6

√
3 they are

not 0).
When we cancel out

√
C from the second and third equation we get 5B = 6A. When we express B in terms of A and

put int the first equation we get a quadratic equation

A2 − 12

5
A− 13 = 0.

with solutions 5 and − 13
5
. As a, b and c are positive reals, and the sum must be positive so their sum is poistive real

number as well. So A = 5 =⇒ B = 6 =⇒ C = 3.
By AM-GM inequality we get

ab+ bc+ ca

3
>

3
√
ab · bc · ca

⇐⇒ B

3
>

3
√
C2

⇐⇒ 6

3
> 3
√
9 /3

⇐⇒ 8 > 9.

so we reached a contradiction, thus such x, y, z don’t exist.

Problem 4. Let k be a positive integer. At the European Chess Cup every pair of players played a game in
which somebody won (there were no draws). For any k players there was a player against whom they all lost,
and the number of players was the least possible for such k. Is it possible that at the Closing Ceremony all
the participants were seated at the round table in such a way that every participant was seated next to both a
person he won against and a person he lost against.

(Matija Bucić)

Solution. The answer is yes.
In this problem we could use graph theory terminology but as this problem was intended for younger students we shall
avoid mentioning any specific graph theory terms.
Let’s take the largest number of participants whom we can seat around the table as desired. If we have seated all the
participants we are done. Otherwise there is a person not seated at the table. As well there is at least one person seated
at the table so let’s name it a.
WLOG we can assume that for each person seated at the table to his right there is a person he won against and to his
left a person he lost against.
Denote by W the set of people who won against person a, and are not seated at the table. Similarly, let L denote the
set of all people who lost against a and are not seated at the table.
Let’s consider any person p from W . If person p lost against the left neighbour of a, then we could seat p in between a
and his (former) left neighbour, which is a contradiction with the assumption that we have seated the maximal possible
number of people. So p won against the left neighbour of a. Using similar deduction we conclude that p won against the
next left neighbour as well etc. So p must have won against everybody seated at the table.
In the same way if we consider any person q from L and consider the right neighbour of a, we can conclude that q lost
against every person seated at the table.
If some person r from W lost against some person s in L, then instead of seating a we can seat s and r respectively by
which we would reach a contradiction to the number of people seated being maximal.
So we conclude that all the people in W won against all people not in W and all the people in L lost against all people
not in L.
As there is a someone who is not seated either W or L is non-empty. If W is non-empty, we can consider the set W as
an independent chess cup. It is a cup with smaller number of participants but still satisfying problem conditions which
would be the contradiction with the fact that our starting cup is the smallest such cup.
As well if L is non-empty, the smaller cup made by people seated at the table and people in W also satisfies the problem
conditions and gives us a contradiction.
So the only possibility is that both W and L are empty so indeed it is possible to seat everyone at such table.
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