

Problem 1. Which of the following claims are true, and which of them are false? If a fact is true you should prove it, if it isn't, find a counterexample.

- a) Let a, b, c be real numbers such that $a^{2013} + b^{2013} + c^{2013} = 0$. Then $a^{2014} + b^{2014} + c^{2014} = 0$.
- b) Let a, b, c be real numbers such that $a^{2014} + b^{2014} + c^{2014} = 0$. Then $a^{2015} + b^{2015} + c^{2015} = 0$.
- c) Let a, b, c be real numbers such that $a^{2013} + b^{2013} + c^{2013} = 0$ and $a^{2015} + b^{2015} + c^{2015} = 0$. Then $a^{2014} + b^{2014} + c^{2014} = 0$.

(Matko Ljulj)

Problem 2. In each vertex of a regular n-gon $A_1A_2...A_n$ there is a unique pawn. In each step it is allowed:

- 1. to move all pawns one step in the clockwise direction or
- 2. to swap the pawns at vertices A_1 and A_2 .

Prove that by a finite series of such steps it is possible to swap the pawns at vertices:

- a) A_i and A_{i+1} for any $1 \leq i < n$ while leaving all other pawns in their initial place
- b) A_i and A_j for any $1 \le i < j \le n$ leaving all other pawns in their initial place.

(Matija Bucić)

Problem 3. Let ABC be a triangle. The external and internal angle bisectors of $\angle CAB$ intersect side BC at D and E, respectively. Let F be a point on the segment BC. The circumcircle of triangle ADF intersects AB and AC at I and J, respectively. Let N be the mid-point of IJ and H the foot of E on DN. Prove that E is the incenter of triangle AHF.

(Steve Dinh)

Problem 4. Find all infinite sequences a_1, a_2, a_3, \ldots of positive integers such that

- a) $a_{nm} = a_n a_m$, for all positive integers n, m, and
- b) there are infinitely many positive integers n such that $\{1, 2, \ldots, n\} = \{a_1, a_2, \ldots, a_n\}$.

(Matko Ljulj)

Time allowed: 240 minutes. Each problem is worth 10 points. Calculators are not allowed.