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Problem 1. Which of the following claims are true, and which of them are false? If a fact is true you should
prove it, if it isn’t, find a counterexample.

a) Let a, b, c be real numbers such that a2013 + b2013 + c2013 = 0. Then a2014 + b2014 + c2014 = 0.

b) Let a, b, c be real numbers such that a2014 + b2014 + c2014 = 0. Then a2015 + b2015 + c2015 = 0.

c) Let a, b, c be real numbers such that a2013 + b2013 + c2013 = 0 and a2015 + b2015 + c2015 = 0. Then
a2014 + b2014 + c2014 = 0.

(Matko Ljulj)

Problem 2. In each vertex of a regular n-gon A1A2...An there is a unique pawn. In each step it is allowed:

1. to move all pawns one step in the clockwise direction or

2. to swap the pawns at vertices A1 and A2.

Prove that by a finite series of such steps it is possible to swap the pawns at vertices:

a) Ai and Ai+1 for any 1 6 i < n while leaving all other pawns in their initial place

b) Ai and Aj for any 1 6 i < j 6 n leaving all other pawns in their initial place.

(Matija Bucić)

Problem 3. Let ABC be a triangle. The external and internal angle bisectors of ∠CAB intersect side BC at
D and E, respectively. Let F be a point on the segment BC. The circumcircle of triangle ADF intersects AB
and AC at I and J , respectively. Let N be the mid-point of IJ and H the foot of E on DN . Prove that E is
the incenter of triangle AHF .

(Steve Dinh)

Problem 4. Find all infinite sequences a1, a2, a3, . . . of positive integers such that

a) anm = anam, for all positive integers n,m, and

b) there are infinitely many positive integers n such that {1, 2, . . . , n} = {a1, a2, . . . , an}.

(Matko Ljulj)

Time allowed: 240 minutes.

Each problem is worth 10 points.

Calculators are not allowed.


