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Problems and Solutions

Problem 1. Which of the following claims are true, and which of them are false? If a fact is true you should
prove it, if it isn’t, find a counterexample.
a) Let a,b, ¢ be real numbers such that a?0'3 4 52013 4 2013 — (), Then ¢201% 4 p2014 4 (2014 — (),
b) Let a,b, c be real numbers such that a?°1* + 52014 + 2014 = (. Then 2°® + p?°15 + 2915 = (.
c) Let a,b,c be real numbers such that 2013 4 2013 4 2013 = ( and @?°*® + 2015 4 2915 = (. Then
q2014 4 32014 | 2014 _ ()

(Matko Ljulj)

Solution. Firstly, we know that for every real number z, > > 0 holds.

The key idea in this problem is to realize that the expression a?01* 4 p2014 4 2014

nonnegative numbers). Thus a?*'* + 5?0 + 2 =0 <= a=b=c=0.

is a sum of squares (which are

a) NO: It is sufficient to find three real numbers whose sum equals 0, and then take their 2013 roots. For example:
a= "Y1,b= "2, c= */=3.
b) YES: From the key idea we conclude ¢ = b = ¢ = 0, and then we conclude a?%'% 4 4?15 4 215 =0 4040 = 0.

¢) NO: Again we have to find a counterexample, for instance a = 1,b = 0,¢ = —1.

Problem 2. In each vertex of a regular n-gon A; As...A,, there is a unique pawn. In each step it is allowed:

1. to move all pawns one step in the clockwise direction or

2. to swap the pawns at vertices A; and As.

Prove that by a finite series of such steps it is possible to swap the pawns at vertices:

a) A; and A;1; for any 1 < ¢ < n while leaving all other pawns in their initial place

b) A; and A; for any 1 < i < j < n leaving all other pawns in their initial place.

(Matija Bucié)

Solution. We denote a pawn that was initially at point A; as i. We will prove part a) and then use it to show part b).

a) We apply first operation ¢ — 1 times which will bring ¢ and ¢ 4+ 1 to points A; and A2 and move every other pawn
i — 1 steps in clockwise direction.
We can now apply second operation to swap i and ¢ + 1 as they are at points A; and As. This does not affect the
position of any other pawn.
We now apply first operation n — ¢ 4+ 1 times returning pawn k # 4,7 + 1 to point Ay while moving pawn i to A;41
and pawn ¢ + 1 to A; which is exactly what we wanted.

b) We present 2 possible solutions, one using induction and one not using induction.
Solution 1: By using the previous problem we can swap pawns (i,7 + 1) as they are at points (A;, A;+1) then
(7,74 2) as they are at points (A;4+1, Ai+2) and carry on until we swap (7, j) as they were at points (4,1, 4;). This
brings us to the state where 7 is at A; and each i +1 < k < j is at point Ay_;.
We can now apply part a to swap j with j — 1 and similarly carry on till we swap j with ¢+ 1. This will place j at
A; and move each i +1 < k< j—1 to Ag.

This brings us to the state where we swapped pawns ¢ and j leaving others where they were just as was desired. [



Solution 2: We use induction on n for the following claim:

We can swap any two pawns 1 < i < j < k.

We note that the basis is exactly part a.

We assume we the claim holds for some k.

Hence we can swap any pawns 1 < i < j < k and only need to show that we can swap i and k+ 1 for any 1 <i < k.

This follows as we can swap ¢ and k then k and k + 1 by part a). then again k + 1 and i as they are now on points
Ar and A;.
O

Problem 3. Let ABC be a triangle. The external and internal angle bisectors of ZC' AB intersect side BC' at
D and F, respectively. Let F' be a point on the segment BC. The circumcircle of triangle ADF' intersects AB
and AC at I and J, respectively. Let N be the mid-point of IJ and H the foot of E on DN. Prove that F is
the incenter of triangle AHF.

(Steve Dinh)

Solution. Denote by w the circumcircle of AAHF.

The key idea in the problem is to introduce a new point X which we define as the second intersection of DN and w.
We now note that the ZJAD = ZCAD = 90° £ § and ZIAD = ZBAD = 90° £+ § where a = ZCAB. As AD is an
external bisector of ZCAB.

The + signs depend on the picture and student shouldn’t be deducted any points for not noticing this.

Hence we have either /JAD = /BAD or /JAD + ZIAD = 180° so in both cases DI = D.J.

Now as N is midpoint of I.J this means that DN is bisector of I.J and hence pasess through the centre of the. This
shows that DX is a diameter of w and EH||IJ.

We also notice that ZEAD = 90° as angle between bisectors and /X AD = 90° as DX is a diameter. Hence X, A, F are
collinear.

Now this gives us /ZDHE = /XHE = 90° and /ZXFFE = /DFFE = 90° as DX is a diameter of w and finally again
ZEAD = 90°. All this gives us that quadrilaterals X FEH and ADFEH are cyclic.

Final step is to use some angle chasing to get ZAHE = /ZADH = /AXF = /EXF = /ZEHF where first, second and
fourth equalities are due to cyclicity of ADEH, ADXF and X FEH respectively. Also /DFH = /EFH = /EXH =
/AFD = ZAFE where the second and forth equalities are due to cyclicity of X FEH and ADXF respectively. This
shows F is the incenter of AAFH as desired.

Problem 4. Find all infinite sequences a1, as, as, ... of positive integers such that

a) Apm = Anam, for all positive integers n,m, and

b) there are infinitely many positive integers n such that {1,2,...,n} = {a1,as,...,a,}.



(Matko Ljulj)

Solution. Instead of sequence a,, we’ll use notation with the function f(n) with same properties.

There exists only one such function: f(n) =n. We’ll solve the problem with many separate facts.

Fact 1: f(1) =1.

Proof: According to a) it holds f(1) = f(1)f(1) = f(1)%. Since f(1) is positive integer, it can’t be f(1) = 0, so it must
be f(1) = 1.

Fact 2: Function f is bijective.

Proof: Firstly, we’ll show that f is injective. Let a # b be two arbitrary positive integers and let’s assume f(a) = f(b).
Since {1,2,...,n} = {f(1), f(2),..., f(n)} holds for infinitely many positive integers n, it holds for some integer greater
than a and b. Then, since f(a) = f(b), set {f(1), f(2),..., f(n)} contains n— 1 or less (different) elements, but according
to b), it contains n elements.

Secondly, we’ll show that f is surjective. Let ¢ be arbitrary integer and let’s assume that f(n) # c for all positive integers
n. Similarly as in first part of proof, let’s take positive integer n such that {1,2,...,n} = {f(1), f(2),..., f(n)} holds.
Since ¢ € {1,2,...,n}, cis also element of the set {f(1), f(2),..., f(n)}, so there exists positive integer m < n such that
f(m) =c.

Fact 3: Positive integer n is prime if and only if f(n) is prime.

Proof: Let’s assume that n is prime, but f(n) isn’t. Then it must be f(n) = a’b’ = f(a)f(b) = f(ab), where o',V are
positive integers greater than 1, and a, b are unique positive integers such that f(a) = a’, f(b) = b’ (they exist since f
is bijective). Since f is injective, f(1) = 1 and a’,b" are not equal to 1, integers a, b are also not equal to 1. Since f is
injective and f(n) = f(ab), we have n = ab, so n is composite.

Let’s assume that f(n) is prime, but n isn’t. Then there exist positive integers a,b greater than one such that n = ab.
From there we have f(n) = f(ab) = f(a)f(b). Again from injectivity of f and f(1) = 1, we see that f(n) is product of
two integers greater than 1.

Fact 4: If n = p{'p3? ...p}* is unique factorization of positive integer n, then

f(n) = f(p)* f(p2)* ... f(px)™

is unique factorization of positive integer f(n).
Proof: From multiple use of the condition a) we get identity f(n) = f(p1)* f(p2)®* ... f(pr)**. From Fact 3, numbers
f(pi) are prime. Since f is injective, none of two numbers f(p;) and f(p;) are equal.
Fact 5: (Technical result) For all positive integers y < x there exist positive integer no such that for all positive integers
n = no holds inequality

Yyttt <o
Proof: Tt is sufficient to prove the fact only for consecutive integers y and y+ 1 (because we’ll have y" 1 < (y+1)" < z™).
By binomial theorem we have

W+D" =y +ny" =y" "y +n).
Thus if we define ng = y2 —y 4+ 1, then for all n > no we have

+D">y" " y+n) >y y+n) =y P+ 1) >y

T n
(7) > .
Y
The fact follows from the fact that the expression on the left hand side is increasing and it is unbounded, while the right

hand side is fixed.
Fact 6: For all prime numbers p we have f(p) < p.

Another proof: Inequality is equivalent to

Proof: Let pi,p2,...,Pn,... be the increasing sequence 2,3,5,7,... of all prime numbers. Let’s take arbitrary prime
number p,. From the Fact 3 we have that f(p,) is also a prime. Let’s take positive integer ng as the integer from
the Fact 5, for positive integers y = pn < pnt+1 = x. Since b) holds for infinitely many positive integers, it holds for
some positive integer N such that {1,2,..., N} = {f(1), f(2),..., f(N)}, and such that N > p;;°. Let o be the greatest
positive integer such that p; < N. From definitions of N and « we have a > ng.

In set {1,2,..., N} we’ll observe all positive integers which are o' power of a prime number. Since N > p%, we have
that pj, is in that set. It is easy to see that all numbers pf', ..., p,_; are also in that set. On the contrary, number p;,
is not in that set, because from the definition of o and N respectively we have N < po™ < p&, 1 (remember Fact 5 and
a > np). Similarly, neither of the numbers py, (for m > n) is not in the set {1,2,..., N}.

Let us now observe all positive integers which are o' power of a prime and they are in the set {f(1), f(2),..., f(N)}.
According to Fact 4, we have that f(n) is o™ power of a prime if and only if n is o' power of a prime. From that and
from previous paragraph we conclude that only such numbers are f(pf),..., f(py).

Now we have {pf,...,pa} = {f(p1),.-., f(pn)}. Thus f(p5) € {pT,...,pn}, so f(pyn) = p§* for some 1 < ¢ < n, which
implies f(pn)® = pf, for some 1 <i<n = f(pn) = pi < pn, which completes the proof.

Fact 7: For every positive integer we have f(n) = n.



Proof: From Fact 3 we have that f(p) if and only if p is prime. Let p1,p2, ..., Pn,... be the increasing sequence 2,3,5,7, ...
of all prime numbers. From Fact 6 we have f(p1) < p1 = f(2) = 2. For n > 2, inductively and from injectivity of f
we have f(pn) > pn—1 and from Fact 6 we have f(pn) < pn, thus is must be f(pn) = pn, for all positive integers n.
Now for arbitrary positive integer n from Fact 4 we have

fn) = flp)* f(p2)*® ... f(px)™ = pi'p3® ... .pk =

which completes our proof.

Remark: We can prove Fact 6 differently (without using Fact 5). We observe numbers 1-2-...-n and f(1)- f(2)-...- f(n),
and their unique factorizations. They coincide for infinitely many positive integers n. For fixed primes p, ¢, if we take
sufficiently great n, we can use well-known formula for v,(n!) to prove that v,(n!) > v4(n!) for all ¢ > p (here positive
integer n depends on p, q).



